Optimal free models of many-body interacting theories

Christopher J. Turner¹, Konstantinos Meichanetzidis², Zlatko Papić and Jiannis K. Pachos

School of Physics and Astronomy, University of Leeds, United Kingdom

¹pycjt@leeds.ac.uk ²mmkm@leeds.ac.uk

Motivation

- Interacting particles give rise to many fascinating phases of matter which remain theoretically challenging. Free systems are in contrast much better understood.
- Interacting systems are often described in terms of free and integrable models as in mean field theory and perturbation theory.
- We quantify the relevance of interactions based on the particular structure of entanglement found in free systems.
- We use this measure to identify *optimal* free descriptions of interacting systems.

Interaction Distance

We introduce the *interaction distance* between an interacting state ρ and manifold of free states \mathcal{F}

$$T_{\mathcal{F}}(\rho) = \min_{\sigma \in \mathcal{F}} T(\rho, \sigma), \tag{1}$$

where $T(\rho, \sigma) = \frac{1}{2} \operatorname{tr} \sqrt{(\rho - \sigma)^2}$ is the trace distance. It measures the distinguishability of ρ from ground states of free theories.

The manifold \mathcal{F} contains all unitary orbits of Gaussian states, or equivalently Gaussian states in any basis of mode operators $\{c\}$. In particular, σ can be free in terms of quasiparticles with different exchange statistics than those of ρ .

We have freedom to consider general unitary orbits because each σ can be expressed as

$$\sigma = \exp\left\{z + \sum_{j} m_{j} c_{j}^{\dagger} c_{j}\right\} \tag{2}$$

with some $\{c\}$ bosonic or fermionic mode operators. The action of a general unitary operator U on σ simply effects a canonical transformation $c \mapsto UcU^{\dagger}$ leaving the system free even if it is not a Gaussian map.

It has been shown that the trace distance is minimised within a unitary orbit when σ and ρ are simultaneously diagonal and their eigenvalues are both in rank order. Only minimisation with respect to $\{\epsilon\}$ is needed in order to compute interaction distance which makes this procedure efficient.

Free entanglement spectra

The reduced density matrix ρ for a ground state $|\psi\rangle$ is $\rho = \operatorname{tr}_B |\psi\rangle \langle\psi|$ found by tracing out part of the system. The entanglement Hamiltonian $H_E = -\ln\rho$ has eigenvalues $\{\xi\}$, known as the *entanglement spectrum*.

The entanglement spectrum of a free state is generated combinatorially from the single-body entanglement spectrum $\{\epsilon\}$,

$$\xi_n = \left\{ \xi_0 + \sum_{i=1}^N n_i \epsilon_i \right\}_{n_i = 0, \dots, m}, \tag{3}$$

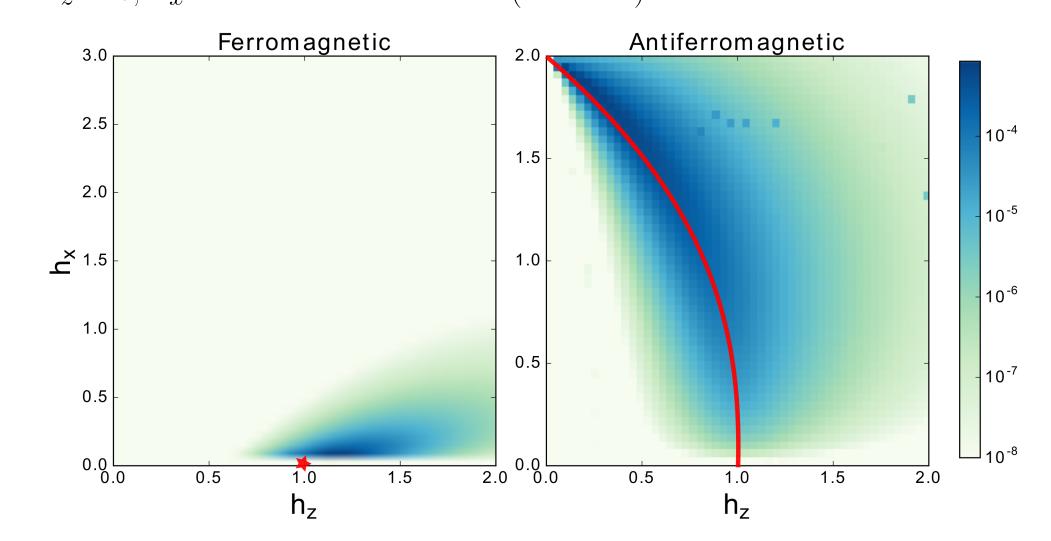
with $m=\infty$ for bosons, $m<\infty$ for soft-core bosons, and m=1 for fermions, and ξ_0 a normalisation constant. This is because the partial trace is a Gaussian map.

Case study: Ising model in a magnetic field

As an example we use the 1D quantum ferromagnetic (FM) and antiferromagnetic (AFM) Ising models in transverse (h_z) and (h_x) longitudinal fields

$$H_{\pm} = -\sum_{j} (\pm \sigma_{j}^{x} \sigma_{j+1}^{x} + h_{z} \sigma_{j}^{z} + h_{x} \sigma_{j}^{x}). \tag{4}$$

In both models the $h_x = 0$ transvere Ising line is free and satisfies $T_{\mathcal{F}} = 0$. This line contains a critical point at $h_x = 0$, $h_z = 1$ which is isolated in the FM model and connected by a critical line to the classical critical point $h_z = 0$, $h_x = 2$ in the AFM model (sketched).



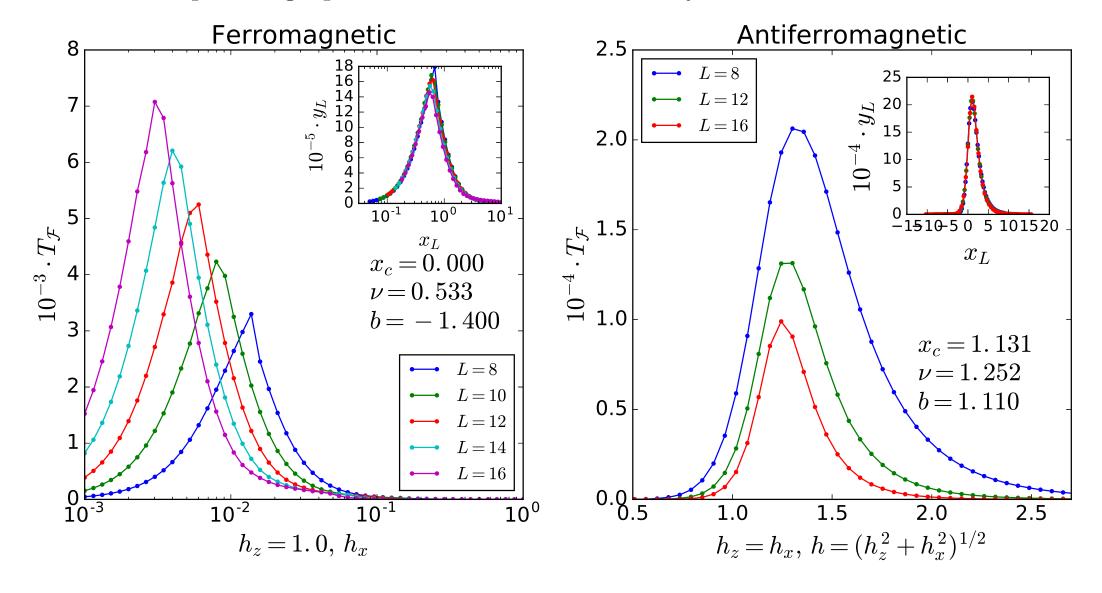
- The figures are for periodic boundary conditions and 16 spins.
- $T_{\mathcal{F}}$ is significant only close to criticality and decreasing toward zero approaching the stable fixed points of the renormalisation flow.
- As the system size is increased the region over which $T_{\mathcal{F}}$ is significant shrinks around criticality.

Scaling around critical points

We examine the scaling around criticality with finite size scaling (FSS) analysis according to

$$T_{\mathcal{F}}(\lambda; L) \sim L^{-b} \tilde{f}\left((h - h_c) L^{1/\nu}\right)$$
 (5)

The exponent ν is the correlation length critical exponent. Sign of exponent b relates to the relevance or irrelevance of corresponding operator in the critical theory.



- From FSS analysis of the energy gap ΔE we find $\nu \approx 1.052$ for the AFM model which is within 20% of the value obtained from $T_{\mathcal{F}}$.
- We know analytically ν for the FM model where it is $\nu = 8/15$ which is in good agreement.

Convergence

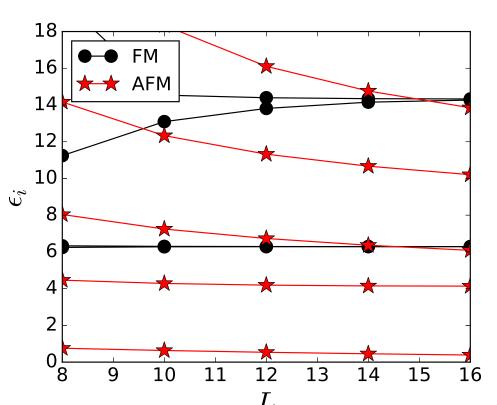
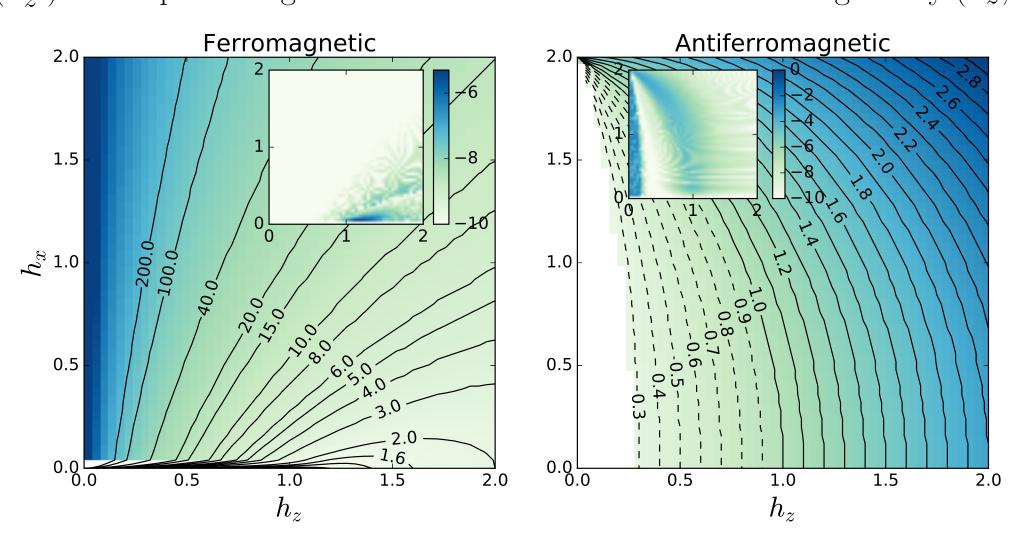


Figure shows the convergence the single particle entanglement energies ϵ as a function of system size L to their asymptotic values in the thermodynamic limit for the (blue) FM and (red) AFM models at $(h_x = 0.16, h_z = 0.88)$.

Matching the free model

We minimise the trace distance between the optimal free model and the free Ising models identifying the free theory $(h_z^{\mathcal{F}})$ with equivalent ground state correlations to the interacting theory (h_z, h_x) .



- Contours shows matching of the optimal free model to the free Ising models in the thermodynamic limit.
- The Insets give the trace distance (log scale) between the optimal free model to the Ising free model.
- Unresolved degeneracy in the energy spectrum close to the classical axis $h_z = 0$ causes artefacts which have been removed.

Outlook

- Could be used to find a free parent Hamiltonian.
- The scaling exponents around criticality could be explained using conformal field theory.
- See what happens for non-renormalisable models.

References

- [1] M G Genoni, M G A Paris and K Banaszek. "Quantifying the non-Gaussian character of a quantum state by quantum relative entropy" $Physical\ Review\ A\ 78.6\ (2008)$ p. 060303.
- [2] Hui Li and F Haldane. "Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States" *Physical Review Letters* 101.1 (2008) 010504-4. APA
- [3] I Peschel. "Calculation of reduced density matrices from correlation functions" *Journal of Physics* A: Mathematical and General 36.14 (2003), pp. L205-L208.