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• Interacting particles give rise to many fascinating phases of matter which remain theoretically chal-
lenging. Free systems are in contrast much better understood.

• Interacting systems are often described in terms of free and integrable models – as in mean field theory
and perturbation theory.

•We quantify the relevance of interactions based on the particular structure of entanglement found in
free systems.

•We use this measure to identify optimal free descriptions of interacting systems.

Motivation

We introduce the interaction distance between an interacting state ρ and manifold of free states F

TF(ρ) = min
σ∈F

T (ρ, σ), (1)

where T (ρ, σ) = 1
2 tr
√

(ρ− σ)2 is the trace distance. It measures the distinguishability of ρ from ground
states of free theories.

The manifold F contains all unitary orbits of Gaussian states, or equivalently Gaussian states in any
basis of mode operators {c}. In particular, σ can be free in terms of quasiparticles with different exchange
statistics than those of ρ.

We have freedom to consider general unitary orbits because each σ can be expressed as

σ = exp

z +
∑
j

mjc
†
jcj

 (2)

with some {c} bosonic or fermionic mode operators. The action of a general unitary operator U on σ
simply effects a canonical transformation c 7→ UcU† leaving the system free even if it is not a Gaussian
map.

It has been shown that the trace distance is minimised within a unitary orbit when σ and ρ are simul-
taneously diagonal and their eigenvalues are both in rank order. Only minimisation with respect to {ε}
is needed in order to compute interaction distance which makes this procedure efficient.

Interaction Distance

The reduced density matrix ρ for a ground state |ψ〉 is ρ = trB |ψ〉 〈ψ| found by tracing out part of the
system. The entanglement Hamiltonian HE = − ln ρ has eigenvalues {ξ}, known as the entanglement
spectrum.

The entanglement spectrum of a free state is generated combinatorially from the single-body entangle-
ment spectrum {ε},

ξn =

ξ0 +

N∑
i=1

niεi


ni=0,...,m

, (3)

with m = ∞ for bosons, m < ∞ for soft-core bosons, and m = 1 for fermions, and ξ0 a normalisation
constant. This is because the partial trace is a Gaussian map.

Free entanglement spectra

As an example we use the 1D quantum ferromagnetic (FM) and antiferromagnetic (AFM) Ising models
in transverse (hz) and (hx) longitudinal fields

H± = −
∑
j

(±σxj σ
x
j+1 + hzσ

z
j + hxσ

x
j ). (4)

In both models the hx = 0 transvere Ising line is free and satisfies TF = 0. This line contains a critical
point at hx = 0, hz = 1 which is isolated in the FM model and connected by a critical line to the classical
critical point hz = 0, hx = 2 in the AFM model (sketched).
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• The figures are for periodic boundary conditions and 16 spins.

• TF is significant only close to criticality and decreasing toward zero approaching the stable fixed points
of the renormalisation flow.

•As the system size is increased the region over which TF is significant shrinks around criticality.

Case study: Ising model in a magnetic field

We examine the scaling around criticality with finite size scaling (FSS) analysis according to

TF(λ;L) ∼ L−bf̃
(

(h− hc)L1/ν
)

(5)

The exponent ν is the correlation length critical exponent. Sign of exponent b relates to the relevance
or irrelevance of corresponding operator in the critical theory.
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• From FSS analysis of the energy gap ∆E we find ν ≈ 1.052 for the AFM model which is within 20%
of the value obtained from TF .

•We know analytically ν for the FM model where it is ν = 8/15 which is in good agreement.

Scaling around critical points
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Figure shows the convergence the single particle entanglement
energies ε as a function of system size L to their asymptotic
values in the thermodynamic limit for the (blue) FM and (red)
AFM models at (hx = 0.16, hz = 0.88).

Convergence

We minimise the trace distance between the optimal free model and the free Ising models identifying the
free theory (hFz ) with equivalent ground state correlations to the interacting theory (hz, hx).
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• Contours shows matching of the optimal free model to the free Ising models in the thermodynamic
limit.

• The Insets give the trace distance (log scale) between the optimal free model to the Ising free model.

•Unresolved degeneracy in the energy spectrum close to the classical axis hz = 0 causes artefacts which
have been removed.

Matching the free model

• Could be used to find a free parent Hamiltonian.

• The scaling exponents around criticality could be explained using conformal field theory.

• See what happens for non-renormalisable models.

Outlook
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