Weak ergodicity breaking from quantum many-body scars
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Experiment and motivation What is a quantum scar?

e Unstable periodic orbits of the classical sta-
dium billiards (right) imprint upon a wave-
function (left) after quantisation|2].

A recent experiment [I] reports on a Rydberg chain with in-
dividual control over interactions. The Hamiltonian is
E : 8 E : R s e This is surprising! One might expect un-
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s.‘a.i‘ 0.0 - many-body setting think eigenstate ther-

malisation for all vs. almost all eigenstates.
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e This can be measured with the participa-
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initial state.
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This is especially surprising considering that the system is in the product state basis.

non-integrable as evidenced by the level statistics! For large 0.0 ] e The special states are quite localised (they
sizes (L = 32) it is approaches the Wigner-Dyson distribu- l
tion.

O must have significant overlap with the Néel

i —#&— Special band
E peeal bat . m states).

O Other states \\
—— 1/Doy A\ N e There are other states in each tower not in

E the band which are also somewhat localised

Effective model and constrained Hilbert space 12 16 20 24 28 32 and lifts the other states line from the de-

I localised prediction.

X In the same limit the Hamiltonian reduces to
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7 Scars and weak ergodicity breaking

e The forward-scattering quasi-modes imprint upon the
eigenstates forming a many-body quantum scar.
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P = and X = . e Figenstates in the special band are strongly scarred,

where Exact
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those in the towers below are weakly scarred in the

Adjacent excitations are forbidden. The Hilbert salme way.

space is that of an effective model of Fibonacci e The ground state is captured essentially exactly in the
anyons. forward-scattering approximation.
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From dynamics to eigenstates ] ' 12-

The eigenvalue decomposition reveals a band of
special states which account for most of the Néel
state with approximately equally spaced eigenval-
ues, and converging with system size. This explains
the oscillatory dynamics.

Split the Hamiltonian H = H, + H_ into a for-
ward propagating part

e Matrix elements of local observables in the
energy basis are not smooth w.r.t. energy.

e Strong formulations of the eigenstate ther-
malisation hypothesis are violated.

Hie= ) X;PiaQiPit ) X;PiaPiPi
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and backward propagating part H_ = H_JL COHCIUSIOHS

Build an orthonormal basis for the Krylov sub-

space generated by H4 starting from the Néel state
20 {10y, ]1),...,|Z)}. The Hamiltonian projected e Non-integrable many-body system which displays periodic quantum revivals despite being ergodic.

'To recap:-

into this subspace is a tight-binding chain e Approximate eigenvalues and eigenstate (quasi-modes) can be found which explain this effect.

7 e Further these quasi-modes scar the exact eigenstates signalling a failure of a strong eigenstate ther-

Hpgy = Z By (|0 (n+ 1] + h.c.) (3) gr;a%lﬁseagzﬁdhypothe&s, i.e. almost all but not all the eigenstates are homogeneous, even in the middle

Also of interest:-

n=0

1ith hoppi litud = 1| H — H_n+1). . : .
with hopping amplitudes S, = (n 4+ 1| Hy [n) = (| 7+ 1) e We show number of zero energy states that grows with the Fibonacci numbers. Can be used for

This is equivalent to a Lanczos recurrence with the approximation that the backward propagate is storing quantum information [4].

roportional to the previous vector H_ [n + 1) ~ n). .. . .
prob prey v n+1) % Buln) e Adding disorder leads to many-body localisation despite the non-tensor product Hilbert space struc-

e Remarkably this can be carried out in time polynomial in L. ture [5].
e Successtully identifies the most important states for explaining the oscillations.
e For I = 32 the eigenvalue error is ~ 1%.

e The error in each step of the recurrence is err(n) = | (n| Hy H_ |n) /82 — 1| which for L = 32 has
maximum err(n) &~ 0.2% and shows a decreasing trend with L.
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