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Experiment and motivation
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A recent experiment [1] reports on a Rydberg chain with in-
dividual control over interactions. The Hamiltonian is

H =
∑

j

(
Ωj
2
Xj −∆jnj

)
+
∑

i<j

Vijninj (1)

where couplings Ω is the Rabi frequency, ∆ is a laser detuning
and Vi,j ∼ C/r6

i,j are replusive van der Waals interactions.

For homogeneous couplings and in the limit Vj,j+1� Ω� ∆
periodic quantum revivals were observed starting for a Néel
initial state.

This is especially surprising considering that the system is
non-integrable as evidenced by the level statistics! For large
sizes (L = 32) it is approaches the Wigner-Dyson distribu-
tion.

Effective model and constrained Hilbert space

In the same limit the Hamiltonian reduces to

H =
∑

j

PjXjPj

where

P =

(
1 0
0 0

)
and X =

(
0 1
1 0

)
.

Adjacent excitations are forbidden. The Hilbert
space is that of an effective model of Fibonacci
anyons.

From dynamics to eigenstates
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The eigenvalue decomposition reveals a band of
special states which account for most of the Néel
state with approximately equally spaced eigenval-
ues, and converging with system size. This explains
the oscillatory dynamics.

Split the Hamiltonian H = H+ + H− into a for-
ward propagating part

H+ =
∑

j even

XjPj−1QjPj+1+
∑

j odd

XjPj−1PjPj+1

(2)

and backward propagating part H− = H
†
+.

Build an orthonormal basis for the Krylov sub-
space generated by H+ starting from the Néel state
{|0〉 , |1〉 , . . . , |L〉}. The Hamiltonian projected
into this subspace is a tight-binding chain

HFSA =

L∑

n=0

βn (|n〉 〈n + 1| + h.c.) (3)

with hopping amplitudes βn = 〈n + 1|H+ |n〉 = 〈n|H− |n + 1〉 .
This is equivalent to a Lanczos recurrence with the approximation that the backward propagate is
proportional to the previous vector H− |n + 1〉 ≈ βn |n〉 .
•Remarkably this can be carried out in time polynomial in L.

• Successfully identifies the most important states for explaining the oscillations.

• For L = 32 the eigenvalue error is ≈ 1%.

• The error in each step of the recurrence is err(n) = | 〈n|H+H− |n〉 /β2
n − 1| which for L = 32 has

maximum err(n) ≈ 0.2% and shows a decreasing trend with L.

What is a quantum scar?
•Unstable periodic orbits of the classical sta-

dium billiards (right) imprint upon a wave-
function (left) after quantisation[2].

• This is surprising! One might expect un-
stable classical period orbits to be lost in
the transition to quantum mechanics as the
particle becomes “blurred”.

•Not all chaotic systems were created equiv-
alent! This model is quantum ergodic but
not quantum unique ergodic[3]. In the
many-body setting think eigenstate ther-
malisation for all vs. almost all eigenstates.

Concentration in Hilbert space
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• This can be measured with the participa-
tion ratio

PR2 =
∑

α

|〈α | ψ〉|4 (4)

in the product state basis.

• The special states are quite localised (they
must have significant overlap with the Néel
states).

• There are other states in each tower not in
the band which are also somewhat localised
and lifts the other states line from the de-
localised prediction.

Scars and weak ergodicity breaking
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•Matrix elements of local observables in the
energy basis are not smooth w.r.t. energy.

• Strong formulations of the eigenstate ther-
malisation hypothesis are violated.

• The forward-scattering quasi-modes imprint upon the
eigenstates forming a many-body quantum scar.

• Eigenstates in the special band are strongly scarred,
those in the towers below are weakly scarred in the
same way.

• The ground state is captured essentially exactly in the
forward-scattering approximation.
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Conclusions

To recap:-

•Non-integrable many-body system which displays periodic quantum revivals despite being ergodic.

•Approximate eigenvalues and eigenstate (quasi-modes) can be found which explain this effect.

• Further these quasi-modes scar the exact eigenstates signalling a failure of a strong eigenstate ther-
malisation hypothesis, i.e. almost all but not all the eigenstates are homogeneous, even in the middle
of the band.

Also of interest:-

•We show number of zero energy states that grows with the Fibonacci numbers. Can be used for
storing quantum information [4].

•Adding disorder leads to many-body localisation despite the non-tensor product Hilbert space struc-
ture [5].
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