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Motivation

Many-body physics is hard...

I How distinct are the ground states of interacting systems of
fermions from non-interacting systems?

I How good are non-interacting and mean field approximations
to interacting physics?

I Can new perspectives be drawn from quantum information
theory?

I Can we do all this more efficiently using some ideas from
machine learning?
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Entanglement spectrum

We partition our system and its Hilbert space H into two
subsystems A and it’s complement B.

A B

The reduced density matrix for the pure state |ψ〉 in subsystem A
is the partial trace

ρA = trB |ψ〉〈ψ| (1)

and the corresponding entanglement Hamiltonian

HE = − ln ρA (2)

has eigenvalues ξk , known as the entanglement spectrum1.
What information can be found in the entanglement spectrum?

1Li and Haldane 2008.



Entanglement spectrum of non-interacting fermions

The entanglement spectrum f for an eigenstate of a system of free
fermions is built from a set {ε} of single particle entanglement
energies2 by

f (σ) = eig(− log σ) =

{
z +

∑
r

nrεr

}
nr=0,1

∀σ ∈ F

This structure is intuitively similar to the many-body energy
spectrum where the spectrum is built out of populating
independent modes.

2Peschel 2003.



Interaction distance

In order to quantify the dissimilarity of an interacting system to the
class of free fermion systems we introduce the interaction distance3

DF (ρ) = min
σ∈F

D(ρ, σ)

where D(ρ, σ) = 1
2tr{

√
(ρ− σ)2} is the trace distance.

ρ

DF

σF

3Turner et al. 2017.



Properties of DF

It has an operational interpretation as measuring the distinguishabil-
ity of the state from an eigenstate of a non-interacting Hamiltonian
with an optimal measurement local to the reduced system4.

D(ρ, σ) = max
P

trP(ρ− σ) (3)

In density functional theory (DFT) a free description is found which
reproduces the expectation values of functions of density operators,
DF bounds the accuracy for other observables [Patrick et al. incom-
ing preprint].

4Englert 1996.



Unitary orbits

The manifold F contains all unitary orbits because each sigma is
unitarily diagonalisable

σ = exp{z +
∑
r

εrc
†
r cr} (4)

effecting a transformation cr 7→ UcrU
† which preserves the CAR

algebra.

Notice however that the trace distance is minimised within a
unitary orbit when σ and ρ are simultaneously diagonal and in
rank-order5.

This simplifies DF to depend only on the spectrum6

DF ({ξ}) = min
{m}

1

2

∑
k

∣∣∣e−ξk − e−fk (m)
∣∣∣

5Markham et al. 2008.
6Turner et al. 2017.



Ising model

H± = −
L∑

j=1

(±σxj σxj+1 + hzσ
z
j︸ ︷︷ ︸

free

+ hxσ
x
j︸︷︷︸

interaction

) (5)

Figure: DF for the ferromagnetic (left) and antiferromagnetic (right)
Ising model. L = 16 and periodic boundary conditions.8

7Turner et al. 2017.
8Turner et al. 2017.



DF as an inverse problem

Free fermion structure is characterised by a function

expand : RN
> → R2N

> (7)

between spectra (multisets).

A method of solution for the problem of finding DF and σ is a
weak inverse form expand, which minimises DF for input outside
the image of expand.

expand ◦ factor ◦ expand = expand (8)

factor ◦ expand ◦ factor = factor (9)

R2N
>

expand←−−−− RN
>

factor←−−− R2N
>

expand←−−−− RN
> = R2N

>
expand←−−−− RN

> (10)



A linear approximation

If we ignore the distinction between vectors and multisets then
expand becomes a linear map E

expand ∼ E : RN → R2N . (11)

As a matrix

E =


1 0 0 . . .
0 1 0 . . .
1 1 0 . . .
...

...
...

. . .

 (12)

containing all bitstrings as rows.

It has linear weak inverses (i.e. Moore-Penrose pseudoinverse).



Results from linear regression

Least squares δ2 solution for the linear system

ε = F ξ + δ (13)
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Future directions

I Least-squares cost function is not appropriate, it favours
getting high energy structure right although it’s Boltzmann
factor is negligible.

I A linear model can’t capture the ordering structure – this will
also be replaced by something more sophisticated.

I Could this be done with unsupervised learning?
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