Quantum many-body scars

or Non-ergodic Quantum Dynamics in Highly Excited States of a Kinematically Constrained Rydberg Chain

Christopher J. Turner¹, A. A. Michailidis¹, D. A. Abanin², M. Serbyn³, Z. Papić¹

¹School of Physics and Astronomy, University of Leeds ²Department of Theoretical Physics, University of Geneva ³IST Austria

> 15th December 2017 Lancaster, NQM2

arXiv:1711.03528

Outline

What is a quantum scar?

An experimental phenomena

Why is it happening?

Quantum scars

- ► First discussed by Heller 1984 in quantum stadium billiards.
- ► Here, classically unstable periodic orbits of the stadium billiards (right) scarring a wavefunction (left).
- ► One might expect unstable classical period orbits to be lost in the transition to quantum mechanics as the particle becomes "blurred".
- ► This model is quantum ergodic but not quantum *unique* ergodic¹. Think eigenstate thermalisation for all eigenstates vs. *almost* all eigenstates.

¹Hassell 2010.

Probing many-body dynamics on a 51-atom quantum simulator

Hannes Bernien¹, Sylvain Schwartz^{1,2}, Alexander Keesling¹, Harry Levine¹, Ahmed Omran¹, Hannes Pichler^{1,3}, Soonwon Choi¹, Alexander S. Zibrov¹, Manuel Endres⁴, Markus Greiner¹, Vladan Vuletic² & Mikhail D. Lukin¹

This experiment² reports on a Rydberg chain with individual control over interactions. The Hamiltonian is

$$H = \sum_{j} \left(\frac{\Omega_{j}}{2} X_{j} - \Delta_{j} n_{j} \right) + \sum_{i < j} V_{ij} n_{i} n_{j}$$
 (1)

where couplings Ω is the Rabi frequency, Δ is a laser detuning and $V_{i,j} \sim C/r_{i,j}^6$ are replusive van der Waals interactions.

²See also another recent experiment Zhang et al. 2017 claiming 53 qubits

Quantum revivals

- For homogeneous couplings and in the limit $V_{j,j+1} \gg \Omega \gg \Delta$ periodic quantum revivals were observed.
- ► This is especially surprising considering that the system is non-integrable as evidenced by the level statistics.

An effective model

In this same limit the dynamics is generated by an effective Hamiltonian

$$H = \sum_{j} P_{j-1} X_{j} P_{j+1} \tag{2}$$

in an approximation well controlled up to times exponential in $V_{j,j+1}/\Omega$ which reproduces the same phenomena. The Hilbert space of the model acquires a kinematic constraint. Each atom can be either in the ground $|\circ\rangle$ or the excited state $|\bullet\rangle$,

but configurations where two adjacent atoms are both excited $|\cdots \bullet \bullet \cdots\rangle$ are forbidden. This makes the Hilbert space similar to that of chains of Fibonacci anyons³.

$$\begin{array}{ccccc} P_1 \hat{X}_2 P_3 & \bigcirc \bigcirc \longrightarrow \bigcirc \bullet \bigcirc & & \bullet \bigcirc \bigcirc \\ P_1 \hat{X}_2 P_3 & \bigcirc \bullet \bigcirc \longrightarrow \bigcirc \bigcirc & & P_1 \hat{X}_2 P_3 & \bigcirc \bigcirc \bullet \longrightarrow 0 \end{array}$$

³Feiguin et al. 2007; Lesanovsky and Katsura 2012.

From dynamics to eigenvalues

- A band of special states which account for most of the Néel state.
- These have approximately equally spaced eigenvalues, and converging with system size.
- Explains the oscillatory dynamics.

Goal: Find or otherwise explain these special states.

Forward-scattering approximation

Split the Hamiltonian $H=H_{+}+H_{-}$ into a forward propagating part

$$H_{+} = \sum_{j \text{ even}} X_{j} P_{j-1} Q_{j} P_{j+1} + \sum_{j \text{ odd}} X_{j} P_{j-1} P_{j} P_{j+1}$$
 (3)

and backward propagating part $H_-=H_+^{\dagger}$. The forward-propagator increases distance from Néel state by one, and the backward-propagator decreases it.

Forward-scattering approximation

Build an orthonormal basis for the Krylov subspace generated by H_+ starting from the Néel state $\{|0\rangle, |1\rangle, \ldots, |L\rangle\}$. The Hamiltonian projected into this subspace is a tight-binding chain

$$H_{FSA} = \sum_{n=0}^{L} \beta_n \left(|n\rangle \langle n+1| + \text{h.c.} \right)$$
 (4)

with hopping amplitudes

$$\beta_n = \langle n+1 | H_+ | n \rangle = \langle n | H_- | n+1 \rangle. \tag{5}$$

This is equivalent to a Lanczos recurrence with the approximation that the backward propagate is proportional to the previous vector

$$H_{-}|n+1\rangle \approx \beta_{n}|n\rangle$$
. (6)

Forward-scattering approximation

- Successfully identifies the important states for explaining the oscillations.
- For L=32 the eigenvalue error $\Delta E/E\approx 1\%$.
- We can calculate eigenvalues and overlaps in this approximation scheme in time polynomial in L.

The error in each step of the recurrence is

$$err(n) = |\langle n| H_{+}H_{-} |n\rangle / \beta_n^2 - 1|$$
 (7)

which for L=32 has maximum $err(n)\approx 0.2\%$ and a decreasing trend with N.

What else is going on? Concentration in Hilbert space

► This can be measured with the participation ratio

$$PR_2 = \sum_{\alpha} |\langle \alpha \mid \psi \rangle|^4 \quad (8)$$

in the product state basis.

- The special states are quite localised (they must have significant overlap with the Néel states).
- ► There are other states in each tower not in the band which are also somewhat localised and lifts the other states line from the delocalised prediction.

Quantum many-body scars

But what's *scarring* got to do with it?

- ► The forward-scattering quasi-modes imprint upon the eigenstates forming a many-body quantum scar.
- ▶ Eigenstates in the special band are strongly scarred, those in the towers below are weakly scarred in the same way.
- ► The ground state is captured essentially exactly in the forward-scattering approximation.

Conclusions

To recap:-

- ▶ Non-integrable many-body system which displays periodic quantum revivals despite being ergodic.
- Approximate eigenvalues and eigenstate (quasi-modes) can be found which explain this effect.
- Further these quasi-modes scar the exact eigenstates signalling a failure of a strong eigenstate thermalisation hypothesis, i.e. almost all but not all the eigenstates are homogeneous, even in the middle of the band.

Also of interest:-

Number of zero energy states that grows with the Fibonacci numbers.