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Outline

What is a quantum scar?

An experimental phenomena

Why is it happening?

What else is going on?
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Quantum scars

I First discussed by Heller 1984 in quantum stadium billiards.

I Here, classically unstable periodic orbits of the stadium
billiards (right) scarring a wavefunction (left).

I One might expect unstable classical period orbits to be lost in
the transition to quantum mechanics as the particle becomes
“blurred”.

I This model is quantum ergodic but not quantum unique
ergodic1. Think eigenstate thermalisation for all eigenstates
vs. almost all eigenstates.

1Hassell 2010.



3 0  n o v e m b e r  2 0 1 7  |  VO  L  5 5 1  |  N A T U RE   |  5 7 9

Article
doi:10.1038/nature24622

Probing many-body dynamics on a  
51-atom quantum simulator
Hannes Bernien1, Sylvain Schwartz1,2, Alexander Keesling1, Harry Levine1, Ahmed Omran1, Hannes Pichler1,3, Soonwon Choi1, 
Alexander S. Zibrov1, Manuel Endres4, Markus Greiner1, Vladan Vuletić2 & Mikhail D. Lukin1

The realization of fully controlled, coherent many-body quantum 
systems is an outstanding challenge in science and engineering. As 
quantum simulators, they can provide insights into strongly correlated 
quantum systems and the role of quantum entanglement1, and ena-
ble realizations and studies of new states of matter, even away from 
equilibrium. These systems also form the basis of the realization of 
quantum information processors2. Although basic building blocks of 
such processors have been demonstrated in systems of a few coupled 
qubits3–5, the current challenge is to increase the number of coherently 
coupled qubits to potentially perform tasks that are beyond the reach 
of modern classical machines.

Several physical platforms are currently being explored to reach these 
goals. Systems composed of about 10–20 individually controlled atomic 
ions have been used to create entangled states and to explore quantum 
simulations of Ising spin models6,7. Similarly sized systems of pro-
grammable superconducting qubits have been implemented recently8. 
Quantum simulations have been carried out in larger ensembles of 
more than 100 trapped ions without individual readout9. Strongly 
interacting quantum dynamics has been explored using optical lattice 
simulators10. These systems are already addressing computationally 
difficult problems in quantum dynamics11 and the fermionic Hubbard 
model12. Larger-scale Ising-like machines have been realized in super-
conducting13 and optical14 systems, but these realizations lack either 
coherence or quantum nonlinearity, which are essential for achieving 
full quantum speedup.

Arrays of strongly interacting atoms
A promising avenue for realizing strongly interacting quantum matter 
involves coherent coupling of neutral atoms to highly excited  
Rydberg states15,16 (Fig. 1a). This results in repulsive van der Waals 
interactions (of strength = /V C Rij ij

6) between Rydberg atom pairs at a 
distance Rij (ref. 15), where C > 0 is the van der Waals coefficient. Such 
interactions have recently been used to realize quantum gates17–19, to 
implement strong photon–photon interactions20 and to study quantum 
many-body physics of Ising spin systems in optical lattices21–23 and in 

probabilistically loaded dipole trap arrays24. Our approach combines 
these strong, controllable interactions with atom-by-atom assembly of 
arrays of cold neutral 87Rb atoms25–27. The quantum dynamics of this 
system is governed by the Hamiltonian
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where Δi are the detunings of the driving lasers from the Rydberg  
state (Fig. 1b), σ = | 〉〈 |+ | 〉〈 |g r r gx

i
i i i i  describes the coupling between  

the ground state |gi〉 and the Rydberg state |ri〉 of an atom at position i, 
driven at Rabi frequency Ωi, ni = |ri〉〈ri|, and ħ is the reduced  
Planck constant. Here, we focus on homogeneous coherent coupling 
(|Ωi| = Ω, Δi = Δ), controlled by changing laser intensities and  
detunings in time. The interaction strength Vij is tuned either by  
varying the distance between the atoms or by coupling them to a  
different Rydberg state.

The experimental protocol that we implement is depicted in Fig. 1c  
(see also Extended Data Fig. 1). First, atoms are loaded from a magneto- 
optical trap into a tweezer array created by an acousto-optic deflector.  
We then use a measurement and feedback procedure that eliminates 
the entropy associated with the probabilistic trap loading and results 
in the rapid production of defect-free arrays with more than 50 laser-
cooled atoms, as described previously26. These atoms are prepared 
in a preprogrammed spatial configuration in a well-defined internal  
ground state |g〉 (Methods). We then turn off the traps and let the  
system evolve under the unitary time evolution U(Ω, Δ, t), which is 
realized by coupling the atoms to the Rydberg state |r〉 = |70S1/2〉 with 
laser light along the array axis (Fig. 1a). The final states of individual 
atoms are detected by turning the traps back on and imaging the recap-
tured ground-state atoms via atomic fluorescence; the anti-trapped 
Rydberg atoms are ejected. The atomic motion in the absence of traps 
limits the time window for exploring coherent dynamics. For a typical 
sequence duration of about 1 μs, the probability of atom loss is less than 
1% (see Extended Data Fig. 2).

Controllable, coherent many-body systems can provide insights into the fundamental properties of quantum matter, 
enable the realization of new quantum phases and could ultimately lead to computational systems that outperform 
existing computers based on classical approaches. Here we demonstrate a method for creating controlled many-body 
quantum matter that combines deterministically prepared, reconfigurable arrays of individually trapped cold atoms with 
strong, coherent interactions enabled by excitation to Rydberg states. We realize a programmable Ising-type quantum 
spin model with tunable interactions and system sizes of up to 51 qubits. Within this model, we observe phase transitions 
into spatially ordered states that break various discrete symmetries, verify the high-fidelity preparation of these states 
and investigate the dynamics across the phase transition in large arrays of atoms. In particular, we observe robust many-
body dynamics corresponding to persistent oscillations of the order after a rapid quantum quench that results from a 
sudden transition across the phase boundary. Our method provides a way of exploring many-body phenomena on a 
programmable quantum simulator and could enable realizations of new quantum algorithms.
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This experiment2 reports on a Rydberg chain with individual
control over interactions. The Hamiltonian is

H =
∑
j

(
Ωj

2
Xj −∆jnj

)
+
∑
i<j

Vijninj (1)

where couplings Ω is the Rabi frequency, ∆ is a laser detuning and
Vi ,j ∼ C/r6i ,j are replusive van der Waals interactions.

2See also another recent experiment Zhang et al. 2017 claiming 53 qubits



Quantum revivals

I For homogeneous couplings and in the
limit Vj ,j+1 � Ω� ∆ periodic
quantum revivals were observed.

I This is especially surprising considering
that the system is non-integrable as
evidenced by the level statistics.
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An effective model

In this same limit the dynamics is generated by an effective
Hamiltonian

H =
∑
j

Pj−1XjPj+1 (2)

in an approximation well controlled up to times exponential in
Vj ,j+1/Ω which reproduces the same phenomena.
The Hilbert space of the model acquires a kinematic constraint.
Each atom can be either in the ground |◦〉 or the excited state |•〉,
but configurations where two adjacent atoms are both excited
| · · · •• · · · 〉 are forbidden. This makes the Hilbert space similar to
that of chains of Fibonacci anyons3.

3Feiguin et al. 2007; Lesanovsky and Katsura 2012.



From dynamics to eigenvalues
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L = 32
I A band of special states

which account for most of
the Néel state.

I These have approximately
equally spaced eigenvalues,
and converging with system
size.

I Explains the oscillatory
dynamics.

Goal: Find or otherwise explain these special states.



Forward-scattering approximation

Split the Hamiltonian H = H+ + H− into a forward propagating
part

H+ =
∑
j even

XjPj−1QjPj+1 +
∑
j odd

XjPj−1PjPj+1 (3)

and backward propagating part H− = H†+. The forward-propagator
increases distance from Néel state by one, and the
backward-propagator decreases it.



Forward-scattering approximation

Build an orthonormal basis for the Krylov subspace generated by
H+ starting from the Néel state {|0〉 , |1〉 , . . . , |L〉}. The
Hamiltonian projected into this subspace is a tight-binding chain

HFSA =
L∑

n=0

βn (|n〉 〈n + 1|+ h.c.) (4)

with hopping amplitudes

βn = 〈n + 1|H+ |n〉 = 〈n|H− |n + 1〉 . (5)

This is equivalent to a Lanczos recurrence with the approximation
that the backward propagate is proportional to the previous vector

H− |n + 1〉 ≈ βn |n〉 . (6)



Forward-scattering approximation
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I Successfully identifies the
important states for
explaining the oscillations.

I For L = 32 the eigenvalue
error ∆E/E ≈ 1%.

I We can calculate
eigenvalues and overlaps in
this approximation scheme
in time polynomial in L.

The error in each step of the recurrence is

err(n) = | 〈n|H+H− |n〉 /β2n − 1| (7)

which for L = 32 has maximum err(n) ≈ 0.2% and a decreasing
trend with N.



What else is going on? Concentration in Hilbert space
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I This can be measured with
the participation ratio

PR2 =
∑
α

|〈α | ψ〉|4 (8)

in the product state basis.

I The special states are quite
localised (they must have
significant overlap with the
Néel states).

I There are other states in each tower not in the band which are
also somewhat localised and lifts the other states line from
the delocalised prediction.



Quantum many-body scars

But what’s scarring got to do
with it?
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I The forward-scattering
quasi-modes imprint upon
the eigenstates forming a
many-body quantum scar.

I Eigenstates in the special
band are strongly scarred,
those in the towers below
are weakly scarred in the
same way.

I The ground state is
captured essentially exactly
in the forward-scattering
approximation.



Conclusions

To recap:-

I Non-integrable many-body system which displays periodic
quantum revivals despite being ergodic.

I Approximate eigenvalues and eigenstate (quasi-modes) can be
found which explain this effect.

I Further these quasi-modes scar the exact eigenstates
signalling a failure of a strong eigenstate thermalisation
hypothesis, i.e. almost all but not all the eigenstates are
homogeneous, even in the middle of the band.

Also of interest:-

I Number of zero energy states that grows with the Fibonacci
numbers.
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