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Quantum scars

» Unstable periodic orbits of the classical stadium billiards (right) imprint upon a
wavefunction (left) after quantisation?.

» This is surprising! One might expect unstable classical period orbits to be lost in
the transition to quantum mechanics as the particle becomes “blurred”.

» Not all chaotic systems were created equivalent3. Think eigenstate thermalisation
for all vs. almost all eigenstates.

2Heller 1984.
3Hassell 2010.



ARTICLE

Probing many-body dynamics on a
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This experiment® reports on a Rydberg chain with individual control over interactions.

The Hamiltonian is
H= Z(JX By ) + 3 Vi W

b4
where couplings Q is the Rabi EEELLN B E— Q”,d
frequency, A is a laser detuning ! —t=e
and V;j ~ C/ . are replusive van Qs
der Waals |nteract|ons. i
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“See also another recent experiment Zhang et al. 2017 claiming 53 qubits



Quantum revivals
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From dynamics to eigenvalues

» A band of special states which
account for most of the Néel state.

» These have approximately equally
spaced eigenvalues, and converging
with system size.

» Explains the oscillatory dynamics.
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Goal: Find or otherwise explain these special states.



Forward-scattering approximation
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We have developed a polynomial (in
L) algorithm to approximate these
most important states.

Successfully identifies the important
states for explaining the oscillations.

For L = 32 the eigenvalue error
AE/E ~ 1%.

Error in each step decreases with
increasing L.



Quantum many-body scars

But what's scarring got to do with it?

» The forward-scattering quasi-modes » Matrix elements of local observables in
imprint upon the eigenstates forming a the energy basis are not smooth w.r.t.
many-body quantum scar. energy. Eigenstate thermalisation is

o4 —— TFxact violated.
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Conclusions

To recap:-

> Non-integrable many-body system which displays periodic quantum revivals
despite being ergodic.

» Approximate eigenvalues and eigenstate (quasi-modes) can be found which
explain this effect.

» Further these quasi-modes scar the exact eigenstates signalling a failure of a
strong eigenstate thermalisation hypothesis, i.e. almost all but not all the
eigenstates are homogeneous, even in the middle of the band.

Also of interest:-

» Number of zero energy states that grows with the Fibonacci numbers. Can be

used for storing quantum information. (See also Schecter et al. arXiv:1801.03101)

» Many-body localisation (Chen et al. arXiv:1709.04067)
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