

Ergodicity breaking: fragmentation and quantum scars

C.J.Turner

14th April 2025, TU Delft

Best regards to D. A. Abanin, A. A. Michailidis, Z. Papić, M. Serbyn, J.-Y. Desaules, K. Bull, M. Kovács, L. Masanes, D. Paszko, D. Rose, A. Pal, M. Szyniszewski, B. Mukherjee, R. Melendrez, H. Changlani

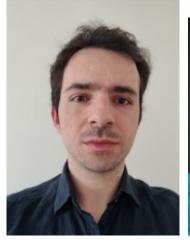
Outline

Weak ergodicity breaking

Fragmentation

Scars in the PXP model

Alternting Heisenberg model



Forms of ergodicity breaking

What avenues are there for a quantum system to avoid equilibrium?

- ► Non-interacting,
- ▶ integrable,
- many-body localised systems

These generically fail to equilibrate. Ergodicity is completely broken.

Q: What would be weak ergodicity breaking?

- Sensitivity to initial conditions
- Some atypical eigenstates

We have two answers to this question now,

- ► Fragmentation
- Quantum scars

Hilbert-space Fragmentation

It can happen that the connectivity of states induces by H forms multiple connected components. Representation theory framework (see Moudgalya *et al.* PRX 2022), for a Hamiltonian, $H = \sum_i h_i$, define a pair of C^* -algebras,

$$\mathcal{A} = \langle h_i \rangle$$
 $\mathcal{C} = \mathcal{A}' = \{O : [O, \mathcal{A}] = 0\}$ (1)

The state space decomposes into a direct sum, c.f. Schur-Weyl duality,

$$\mathcal{H} = \bigoplus_{\lambda} \left(V_{\lambda}^{\mathcal{A}} \otimes V_{\lambda}^{\mathcal{C}} \right) \tag{2}$$

The splitting of H is what makes this non-trivial.

We can also find this in other settings:

- Quantum circuits
- Open quantum systems

Fragmentation in open quantum systems

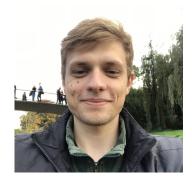
$$\frac{d\rho}{dt} = \mathcal{L}(\rho) = -i\left[H,\rho\right] + \sum_{j} \kappa_{j} \left(2F_{j}\rho F_{j}^{\dagger} - \{F_{j}^{\dagger}F_{j},\rho\}\right)$$

Hamiltonian terms $H = \sum_j Z_{j-1} X_j Z_{j+1}$ and jump operators $F_j = Z_{j-1} Z_{j+1}$.

These sums don't include any terms which would go over the open boundaries.

- Hamiltonian is an SPT phase.
- ➤ Zero modes are (approximate) strong symmetries before dissipation.
- Some of them then become weak symmetries after dissipation.
- Information is recoverable if you can make the jumps observable

This and more is all in arXiv:2310.09406 and not what this talk is about.





D. Rose

OSF: Superoperator algebras

Natural generalisation of bond \mathcal{A} and commutant \mathcal{C} algebras,

$$\mathcal{A} = \langle u_j = -i \operatorname{ad}_{H_j}, \ d_j = \operatorname{Ad}_{F_j} \rangle$$

 $\mathcal{C} = \{ O : [O, u_l] = 0, [O, d_l] = 0 \}$

From the double commutant theorem we get a representation theoretic structure like the Schur-Weyl duality,

$$\mathcal{H} = igoplus_{\lambda} V_{\mathcal{A}}^{(\lambda)} \otimes V_{\mathcal{C}}^{(\lambda)}$$

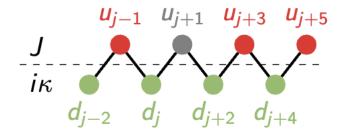
Operator dynamics of a Pauli M,

$$u_j M = -i \operatorname{ad}_{H_j} M = \begin{cases} 0 & \text{if } [H_j, M] = 0 \\ -2iH_j M & \text{otherwise} \end{cases}$$
 $d_j M = \begin{cases} +M & \text{if } [F_j, M] \\ -M & \text{otherwise} \end{cases}$

So
$$(u_i)^2 \in \mathcal{C}$$

OSF: Frustration graphs

The Lindblad terms either commute or anti-commute so we can summarise A represented onto a $(u_i)^2$ fragment with a frustration graph,



and choose another presentation for this algebra with the same properties (see Chapman *et al.* Quantum 2020). It's the TFIM!

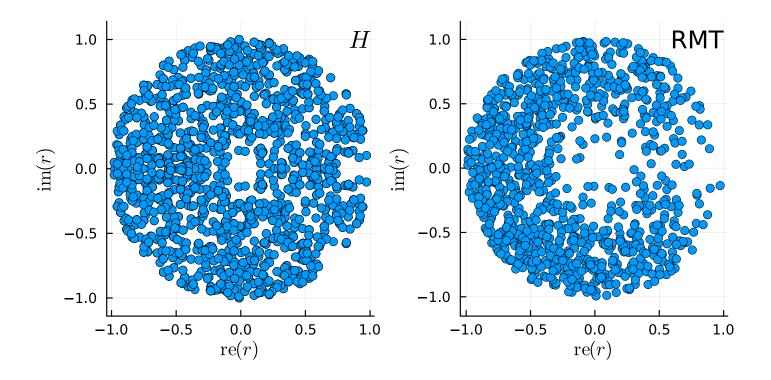
- ▶ If $(u_j)^2 = 0$ in a representation then that Ising term is missing, dividing the system into subsystem fragments.
- Fields can be missing at the boundary due to open boundary conditions.
- ▶ There's another copy of the ising chain for the other parity of terms.

OSF: Effective Model

► The effective model is a non-Hermitian transverse-field Ising model

$$H = \sum_{j} J\sigma_{j}^{X} \sigma_{j+1}^{X} + i\kappa \sum_{j} \sigma_{j}^{Z}$$

- ➤ Sometimes the boundary fields are missing again. This embeds the global zero modes from before.
- ► Complex level spacing ratio after resolving symmetries [Sá et al. PRX 2019]

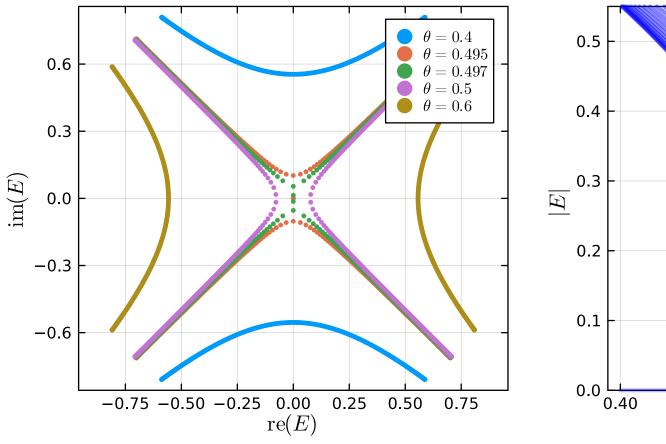


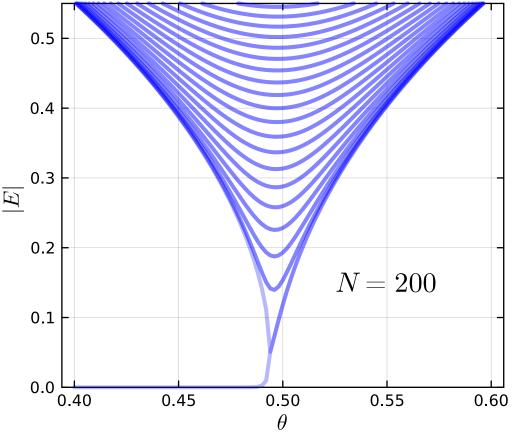
$$r_a = \frac{E_{\rm nn} - E_a}{E_{\rm nnn} - E_a}$$

OSF: Integrability and phase transition

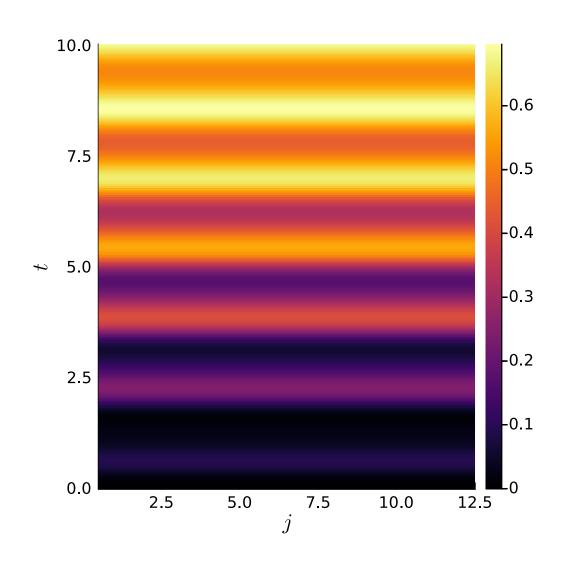
$$H = J \sum_{j} \gamma_{2j-1} \gamma_{2j} + i\kappa \sum_{j} \gamma_{2j} \gamma_{2j+1} = i\gamma^{T} A \gamma$$

$$J=\cos(heta\pi/2), \ K=\sin(heta\pi/2)$$



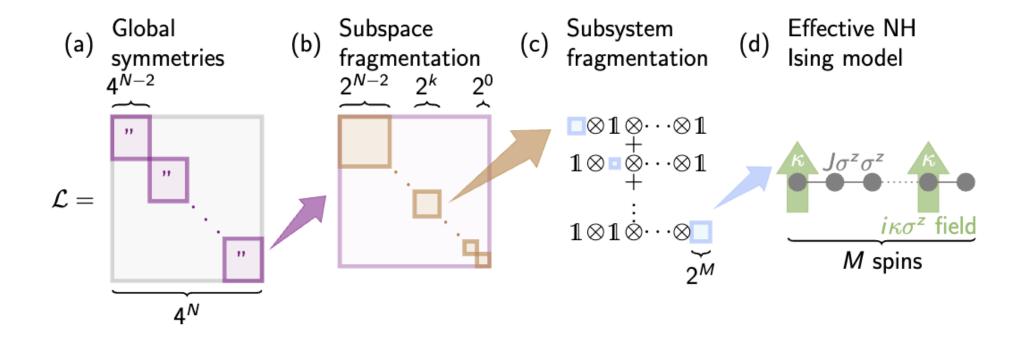


OSF: Dynamical consequences



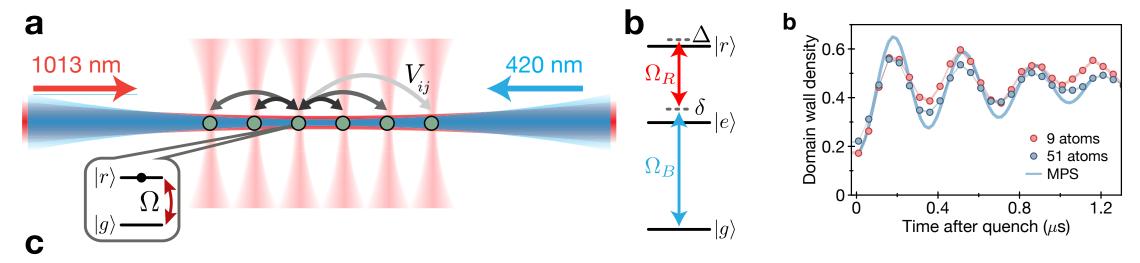
- ▶ Quench from (rapid cooling) ground state $|\phi\rangle$ of κ -dominated phase to J-dominated phase.
- $ightharpoonup |\phi\rangle$ is roughly an extremal Y eigenvector.
- ▶ Looking at observables $\langle \phi(t) | \sigma_i^Z | \phi(t) \rangle$.
- \blacktriangleright Dynamic phase transition, oscillations in the κ order parameter.
- Eventually dissipation will win and system equillibrates.

OSF: Summary



- ► Fragmentation can naturally be generalised to Lindblad master equation as operator-space fragmentation.
- ▶ We can observe a non-Hermitian dynamical phase transition in the operator dynamics

► Cold neutral atoms resonantly driven with a laser to produce Rabi oscillations.



- ▶ If the interaction energy is very large the we get the Rydberg blockade where adjacent excited atoms •• are forbidden.
- ► Long-lived oscillations were observed, but only from very specific states.

Effective PXP model

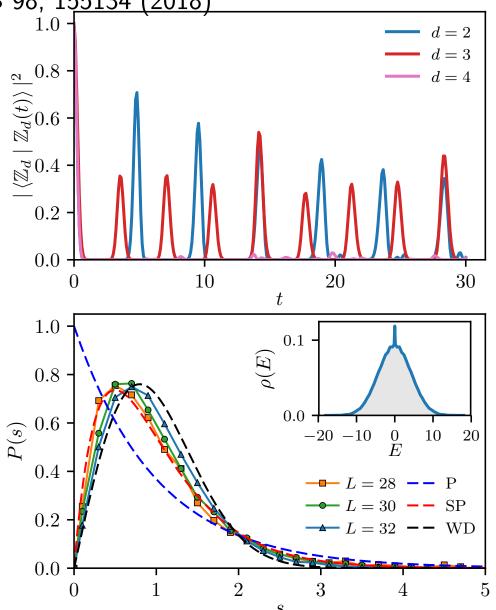
In the blockade regime, the effective Hamiltonian is,

$$H = \sum_{j=1}^{N} P_{j-1} X_j P_{j+1} \qquad \circ \circ \circ \leftrightarrow \circ \bullet \circ \tag{3}$$

- Oscillations in local observables is caused by a periodic quantum revival.
- ► The level statistics is Wigner-Dyson, which rules out strong ergodicity breaking.
- ► There's an exponential degeneracy at zero energy.

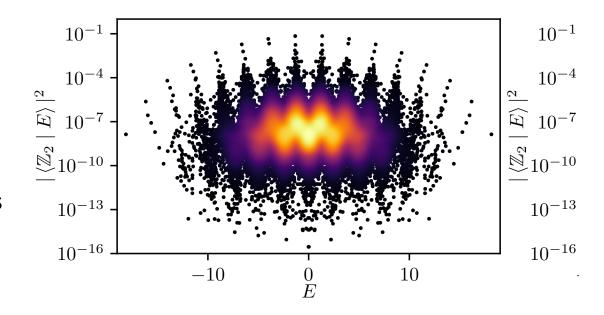
What's going on?

Turner et al. Nat. Phys. 14, 745 (2018) Turner et al. PRB 98, 155134 (2018)



Scarred eigenstates in PXP

- ➤ A small number of special eigenstates with anomalous overlap with the Néel state.
- ► They have approxiamtely equally spaced eigenvalues, converging with *N*.
- ► This explains the oscillatory dynamics.
- ► Most of these eigenstates are not eigenstates of local frustration-free Hamiltonians.
- With a couple of exceptions, [Lin + Motrunich]



Recall the Shiraishi-Mori construction for embedding frustration-free ground states Z as scar states,

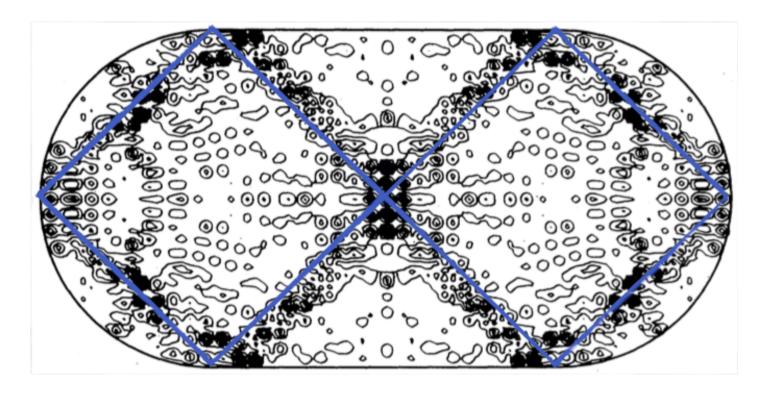
$$H = \sum_{i} h_i P_i + H'$$
 $[H', P_i] = 0$ $[P_i, P_j] = 0$ $Z = \bigcap_{i} \ker P_i$ (4)

Most examples of many-body quantum scars in the literature can be put into this form.

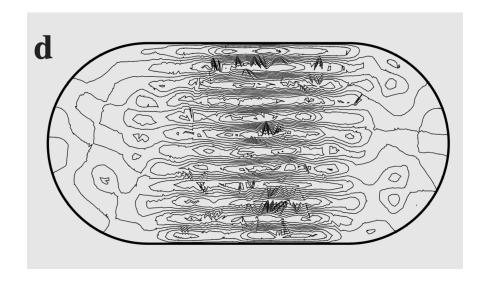
But these are not one of them.

Quantised billiars

- ▶ Unstable periodic orbits of the chaotic classical billiard imprint upon a wavefunction after quantisation.
- ► This is surprising! One might expect that if a particle's position gets blurred out upon quantisation that it would diverge rapidly from unstable trajectories.



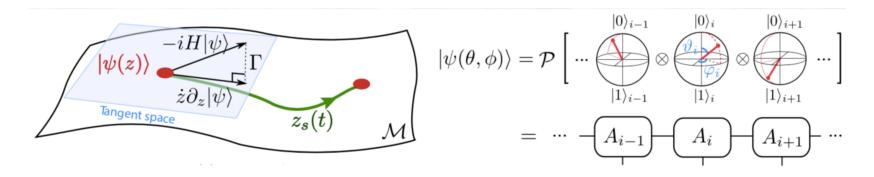
Quasi-modes and scarred eigenstates



- Approximate eigenstates of the form $\phi = \chi sin(ny)$ for suitable χ [O'Conner and Heller 1988]. These are like "bouncing balls" trajectories? But how can these be connected to the exact eigenstates?
- If the quasi-mode has an energy variance K^2 and there's at most M eigenstates in a 4K interval around the quasi-mode, then there exists eigenstates with anomalously large overlap [Zelditch 2004]. This is the corresponding scarred eigenstate.
- Constructing the quasi-modes was simple enough, but showing that the density of states is non-pathological was *much* more challenging [Hassell 2010].
- ► The flavour of these quantum scars is quite different to those following Shiraishi-Mori. Can we follow this recipe in a many-body system?
- ▶ We could call this distinction *algebraic* vs *analytic* quantum scars.

Coherent states and variational dynamics

➤ The most classical states for many systems are the coherent states. There's no suitable frame of traditional coherent states here because of the constraint.



- We can take the next best thing: the quantum dynamics is restricted into a class of states \mathcal{M} using the variational principle (TDVP). See [Ho et al. PRL 2019] and [Michailidis et al. PRX 2020].
- ► We can view this as a mere variational approximation, but we can also view it as a classical system in its own right.

Path integral quantisation and correspondence principle

Recall the Feynman path integral construction for a particle in quantum mechanics. We take a propagator, subdivide it and insert resolutions of the identity.

$$\mathbb{1} = \int \mathrm{d}x \, |x\rangle \, \langle x| \tag{5}$$

Keep refining this process and you have a path integral.

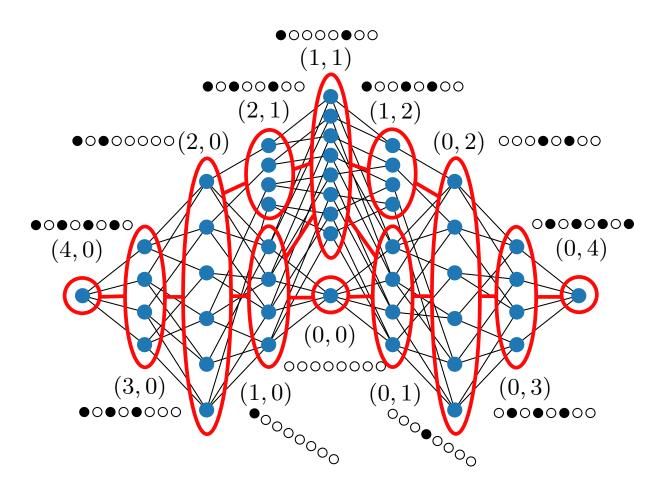
For some provided measure μ , we can construct a frame operator,

$$S_{\mu} = \int d\mu(\mathbf{x}) |\psi(\mathbf{x})\rangle \langle \psi(\mathbf{x})| \qquad (6)$$

Can we choose μ such that S_{μ} is a resolution of the indentity on some subspace? Yes! From \mathcal{M} , you can get the identity on a vector space \mathcal{K} .

Quasi-modes and permuation symmetry

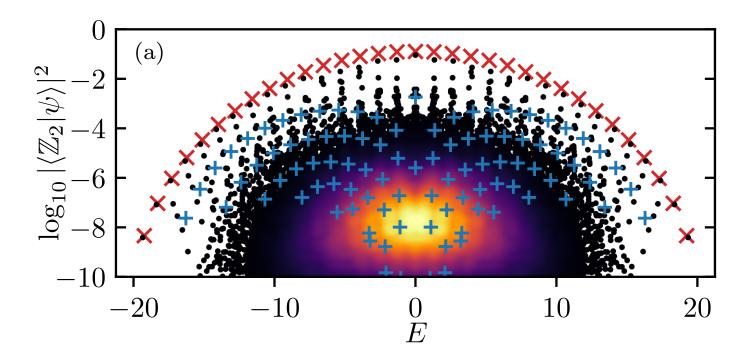
- Turner et al. PRX 11, 021021 (2021)
- \triangleright \mathcal{K} is a space generated by states with fixed numbers of excitation on each sublattice. It's a sublattice respecting but otherwise permutation-invariant subspace projected into the constrained Hilbert space.
- ightharpoonup It has $O(N^2)$ dimension and matrix-elements can be found with some combinatorics.



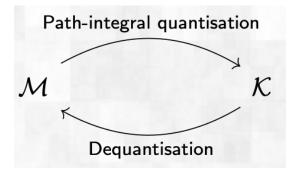
Quasi-modes and permuation symmetry

Turner et al. PRX 11, 021021 (2021)

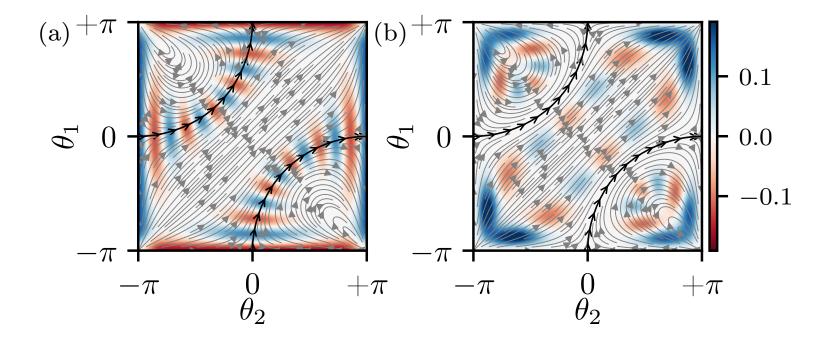
- \triangleright \mathcal{K} is a space generated by states with fixed numbers of excitation on each sublattice. It's a sublattice respecting but otherwise permutation-invariant subspace projected into the constrained Hilbert space.
- ▶ It has $O(N^2)$ dimension and matrix-elements can be found with some combinatorics.
- ightharpoonup We can construct quasi-modes in \mathcal{K} .



Scarring for Rydberg atoms



Gives a picture of the quasi-modes in \mathcal{K} as wavefunctions on \mathcal{M} .



The good quasi-modes take the appealing form of standing waves along the classical periodic orbits.

Summary

A strange many-body system which displays a new kind of ergodicity breaking. An analogy:—

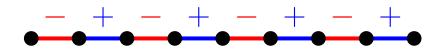
Many-body quantum scar	\leftrightarrow	Single-particle quantum scar
TDVP regular trajectories	\leftrightarrow	Classical periodic orbits
Conditional quantum revival	\leftrightarrow	Oscillatory wavepackets
ETH-violating atypical eigenstates	\leftrightarrow	Scarred wavefunctions (non-uniform measure)
Our new quasi-modes	\leftrightarrow	Boucing-ball quasimodes

- ▶ New-and-improved quasimodes much easier to work with than FSA.
- With connections to a classical limit.
- ightharpoonup The subspce $\mathcal K$ represents mean-field or coherent-state physics.
- ightharpoonup Approach becomes exact in an $S o \infty$ limit. See recent work by Markus Müller.

Alternating Heisenberg chain

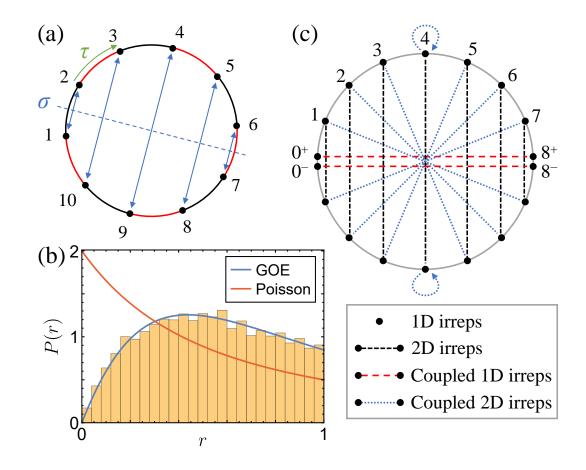
Spin- $\frac{1}{2}$ Heisenberg chain except the coupling alternates in sign,

$$H = \sum_{j=1}^{2N} (-)^{j} S_{j} \cdot S_{j+1}$$
 (7)



- Exponential degeneracy at zero-energy – in the middle of the spectrum. This is due to antisymmetry.
- ► We find several different kinds of scar states in here.

C. J. Turner, M. Szyniszewski, B. Mukherjee, R. Melendrez, H. J. Changlani, A. Pal — arXiv:2407.11956



Bethe-ansatz scars

arXiv:2501.14017 R. Melendrez, B. Mukherjee, M. Szyniszewski, C. J. Turner, A. Pal, H. J. Changlani

Bethe Ansatz states are states of particles with well defined individual momentum,

$$|\mathbf{k}_{1}, \cdots, \mathbf{k}_{m}\rangle \propto \sum_{x_{1} < \dots < x_{m}} e^{i \sum_{a} x_{a} k_{a}} |x_{1}, x_{2}, \cdots, x_{m}\rangle$$

$$|\psi\rangle = \sum_{x_{1} < \dots < x_{m}} \alpha_{\pi(k_{1}, k_{2})} |\mathbf{k}_{1}, \mathbf{k}_{2}\rangle$$

$$(9)$$

$$|\psi\rangle = \sum_{\pi \in S_m} \alpha_{\pi(\mathbf{k}_1, \mathbf{k}_2)} |\mathbf{k}_1, \mathbf{k}_2\rangle \tag{9}$$

- We generalise this a small amount taking superpositions of small numbers of particle momentum sets.
- \blacktriangleright For magnon numbers m=2,3 we find all the zero-energy states.
- For m=4, we find many solutions numerically (but not all the states).
- We have Bethe ansatz-like states as exact eigenstates in the interior of the spectrum.
- Different to the asymptotic Bethe ansatz.

H. J. Changlani

R. Melendrez

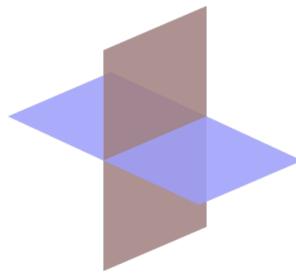
Bethe-Ansatz scars: details of solutions

- We add a sublattice degree of freedom, this is the same as combining each particle momentum k with $k + \pi$.
- ▶ For two magnons m = 2 and even N, the solutions have $k_1 = -k_2$.
- ▶ When *N* is odd you also get fractionalised momenta $(k + \pi/2, k + \pi/2)$.
- ▶ For m = 3, we take (0,0,0), (k,-k,0). Again additional fractionalised solutions for odd N.
- For m = 4, we take (0,0,0,0), $(k_1,-k_1,k_2,-k_2)$, $(k_1,-k_1,0,0)$, $(k_2,-k_2,0,0)$, $(k_1,-k_1,k_1,-k_1)$ and $(k_2,-k_2,k_2,-k_2)$.

We're using a fairly flexible Ansatz so we must be careful: is finding solutions significant?

- ▶ Dimension of Ansatz is $O(N^2)$.
- ▶ Dimension of nullspace is $O(N^2)$.
- ▶ Dimension of enclosing symmetry sector is $O(N^3)$.

So a generic intersection would be zero-dimensional, but we find a growing number with N.



Symmetric tensor scars

arXiv:2501.14024 B. Mukherjee, C. J. Turner, M. Szyniszewski, A. Pal

Recently there has been interest in volume-law scarred eigenstates. Provided N is odd, we have root states, pairing antipodal sites as zero-energy eigenstates,

$$|\Psi(v)\rangle = v^{\otimes N}$$
 (10)

where v is either the singlet state or is any triplet state.

$$SWAP_{i,j} \begin{bmatrix} j & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

As all these states are degenerate, we can take linear combinations,

$$\operatorname{span} |\Psi(V_{S=0,1})\rangle \cong V_{S=0,1}^{\mathit{Sym}} \text{ as vector spaces}$$
 (12)

allowing for state much more interesting than the root states.

B. Mukherjee

M. Szyniszewski

Symmetric tensor scars: Bell basis

From an (orthonormal) basis of S=1, we can build an (orthonormal) basis of symmetric tensor states,

$$|\Psi_{n_1,n_2,n_3}\rangle \propto \sum_{\pi \in S_N} \pi(|T_1\rangle^{\otimes n_1} \otimes |T_2\rangle^{\otimes n_2} \otimes |T_3\rangle^{\otimes n_3})$$
 (13)

One choice is the Bell basis,

$$\left|T_X^B\right\rangle = \frac{1}{\sqrt{2}}\left|\uparrow\uparrow\right\rangle + \left|\downarrow\downarrow\right\rangle \cong \frac{1}{\sqrt{2}}\sigma_X$$
 (14)

$$|T_X^B\rangle = \frac{1}{\sqrt{2}}|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle \cong \frac{1}{\sqrt{2}}\sigma_X$$

$$|T_Y^B\rangle = \frac{1}{\sqrt{2}}|\uparrow\uparrow\rangle - |\downarrow\downarrow\rangle \cong \frac{1}{\sqrt{2}}\sigma_Y$$
(14)

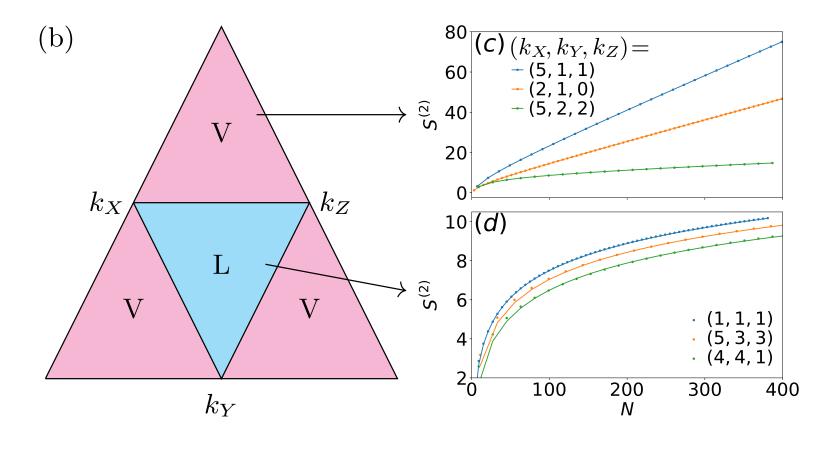
$$\left|T_{Z}^{B}\right\rangle = \frac{1}{\sqrt{2}}\left|\uparrow\downarrow\right\rangle + \left|\downarrow\uparrow\right\rangle \cong \frac{1}{\sqrt{2}}\sigma_{Z}$$
 (16)

Using the algebraic structure of the problem, we are able to compute the Renyi entropy efficiently and we can also extract asymptotics expansions in N.

$$S = -\log \operatorname{tr} \rho^2 = \Psi \Psi^{\dagger} \tag{17}$$

Entanglement in the Bell basis

Using $k_X = n_X/N$ etc.



When is a state thermal?

- ➤ Sometimes there are curious claims that the volume-law scar states are exactly-constructible thermal states.
- ▶ But what does it mean for something to be a thermal state?

We have a class of reference thermal states which are Gibbs states or maybe generalised Gibbs states. If a state is effectively indistinguishable from a reference state then it may as well be thermal. If we look at connected correlation functions on our states,

$$\langle S_i \cdot S_j \rangle = \begin{cases} 1/4 & \text{if } i \text{ and } j \text{ separated by } N \\ 0 & \text{otherwise} \end{cases}$$
 (18)

These states can't be distinguished from the infinite temperature / maximally mixed state by local expectation values.

So are these thermal states?

- ► A competent experimentalist is not an ant living inside their experiment.
- ► They can simultaneously place a probe on each side of the system and calculate this correlation function.
- ▶ This is like LO (local operation) vs LOCC (local operations and classical communication).

Alternating Heisenberg chain: summary

- lntegrability-like scar states with m = 2, 3, 4 particles, featuring paired particle momenta.
- Alternative presentation of m=2 states with high robustness to perturbation (arXiv:2407.11956).
- ► Many-body scar states with area-law, log-law or volume-law entanglement.
- ► These are scar states not thermal states because they're LOCC distinguishable.