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Forms of ergodicity breaking

What avenues are there for a quantum system to avoid equilibrium?

▶ Non-interacting,

▶ integrable,

▶ many-body localised systems

These generically fail to equilibrate. Ergodicity is completely broken.

Q: What would be weak ergodicity breaking?

▶ Sensitivity to initial conditions

▶ Some atypical eigenstates

We have two answers to this question now,

▶ Fragmentation

▶ Quantum scars



Hilbert-space Fragmentation

It can happen that the connectivity of states induces by H forms multiple connected components.
Representation theory framework (see Moudgalya et al. PRX 2022), for a Hamiltonian, H =

∑
i hi ,

define a pair of C ∗-algebras,

A = ⟨hi⟩ C = A′ = {O : [O,A] = 0} (1)

The state space decomposes into a direct sum, c.f. Schur-Weyl duality,

H =
⊕
λ

(
VA
λ ⊗ V C

λ

)
(2)

The splitting of H is what makes this non-trivial.
We can also find this in other settings:

▶ Quantum circuits

▶ Open quantum systems



Fragmentation in open quantum systems

dρ

dt
= L(ρ) = −i [H , ρ] +

∑
j

κj

(
2FjρF

†
j − {F †

j Fj , ρ}
)

Hamiltonian terms H =
∑
j

Zj−1XjZj+1 and jump operators Fj = Zj−1Zj+1 .

These sums don’t include any terms which would go over the open boundaries.

▶ Hamiltonian is an SPT phase.

▶ Zero modes are (approximate) strong symmetries before dissipation.

▶ Some of them then become weak symmetries after dissipation.

▶ Information is recoverable if you can make the jumps observable

This and more is all in arXiv:2310.09406 and not what this talk is about.

D. Paszko

D. Rose



OSF: Superoperator algebras

Natural generalisation of bond A and commutant C algebras,

A = ⟨uj = −iadHj
, dj = AdFj⟩

C = {O : [O, ul ] = 0, [O, dl ] = 0}

From the double commutant theorem we get a representation theoretic structure like the Schur-Weyl
duality,

H =
⊕
λ

V
(λ)
A ⊗ V

(λ)
C

Operator dynamics of a Pauli M,

ujM = −iadHj
M =

{
0 if [Hj ,M ] = 0

−2iHjM otherwise
djM =

{
+M if [Fj ,M ]

−M otherwise

So (uj)
2 ∈ C



OSF: Frustration graphs

The Lindblad terms either commute or anti-commute so we can summarise A represented onto a
(uj)

2 fragment with a frustration graph,

and choose another presentation for this algebra with the same properties (see Chapman et al.
Quantum 2020). It’s the TFIM!

▶ If (uj)
2 = 0 in a representation then that Ising term is missing, dividing the system into

subsystem fragments.

▶ Fields can be missing at the boundary due to open boundary conditions.

▶ There’s another copy of the ising chain for the other parity of terms.



OSF: Effective Model
▶ The effective model is a non-Hermitian transverse-field Ising model

H =
∑
j

JσXj σ
X
j+1 + iκ

∑
j

σZj

▶ Sometimes the boundary fields are missing again. This embeds the global zero modes from
before.

▶ Complex level spacing ratio after resolving symmetries [Sá et al. PRX 2019]

ra =
Enn − Ea

Ennn − Ea



OSF: Integrability and phase transition

H = J
∑
j

γ2j−1γ2j + iκ
∑
j

γ2jγ2j+1 = iγTAγ

J = cos(θπ/2),

K = sin(θπ/2)



OSF: Dynamical consequences

▶ Quench from (rapid cooling) ground state |ϕ⟩
of κ-dominated phase to J-dominated phase.

▶ |ϕ⟩ is roughly an extremal Y eigenvector.

▶ Looking at observables ⟨ϕ(t)|σZj |ϕ(t)⟩.
▶ Dynamic phase transition, oscillations in the
κ order parameter.

▶ Eventually dissipation will win and system
equillibrates.



OSF: Summary

▶ Fragmentation can naturally be generalised to Lindblad master equation as operator-space
fragmentation.

▶ We can observe a non-Hermitian dynamical phase transition in the operator dynamics

arXiv:25XX.XXXX soon (hopefully)



Rydberg atom system

▶ Cold neutral atoms resonantly driven with a laser to produce Rabi oscillations.
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▶ If the interaction energy is very large the we get the Rydberg blockade where adjacent excited
atoms •• are forbidden.

▶ Long-lived oscillations were observed, but only from very specific states.

Bernien et al. Nature 551(7682), 579 (2017)



Effective PXP model

In the blockade regime, the effective Hamiltonian
is,

H =
N∑
j=1

Pj−1XjPj+1 ◦◦◦ ↔ ◦•◦ (3)

▶ Oscillations in local observables is caused by
a periodic quantum revival.

▶ The level statistics is Wigner-Dyson, which
rules out strong ergodicity breaking.

▶ There’s an exponential degeneracy at zero
energy.

What’s going on?
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Scarred eigenstates in PXP

▶ A small number of special eigenstates with
anomalous overlap with the Néel state.

▶ They have approxiamtely equally spaced
eigenvalues, converging with N .

▶ This explains the oscillatory dynamics.

▶ Most of these eigenstates are not eigenstates
of local frustration-free Hamiltonians.

▶ With a couple of exceptions, [Lin +
Motrunich]
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Recall the Shiraishi-Mori construction for embedding frustration-free ground states Z as scar states,

H =
∑
i

hiPi + H ′ [H ′,Pi ] = 0 [Pi ,Pj ] = 0 Z =
⋂
i

kerPi (4)

Most examples of many-body quantum scars in the literature can be put into this form.

But these are not one of them.



Quantised billiars

▶ Unstable periodic orbits of the chaotic classical billiard imprint upon a wavefunction after
quantisation.

▶ This is surprising! One might expect that if a particle’s position gets blurred out upon
quantisation that it would diverge rapidly from unstable trajectories.

Heller PRL 53(16), 1515 (1984)



Quasi-modes and scarred eigenstates

▶ Approximate eigenstates of the form ϕ = χsin(ny) for
suitable χ [O’Conner and Heller 1988]. These are like
”bouncing balls” trajectories? But how can these be
connected to the exact eigenstates?

▶ If the quasi-mode has an energy variance K 2 and
there’s at most M eigenstates in a 4K interval around
the quasi-mode, then there exists eigenstates with
anomalously large overlap [Zelditch 2004]. This is the
corresponding scarred eigenstate.

▶ Constructing the quasi-modes was simple enough, but
showing that the density of states is non-pathological
was much more challenging [Hassell 2010].

▶ The flavour of these quantum scars is quite different to those following Shiraishi-Mori. Can we
follow this recipe in a many-body system?

▶ We could call this distinction algebraic vs analytic quantum scars.



Coherent states and variational dynamics

▶ The most classical states for many systems are the coherent states. There’s no suitable frame
of traditional coherent states here because of the constraint.

▶ We can take the next best thing: the quantum dynamics is restricted into a class of states M
using the variational principle (TDVP). See [Ho et al. PRL 2019] and [Michailidis et al. PRX
2020].

▶ We can view this as a mere variational approximation, but we can also view it as a classical
system in its own right.



Path integral quantisation and correspondence principle

Recall the Feynman path integral construction for a particle in quantum mechanics. We take a
propagator, subdivide it and insert resolutions of the identity.

1 =

∫
dx |x⟩ ⟨x | (5)

Keep refining this process and you have a path integral.
For some provided measure µ, we can construct a frame operator,

Sµ =

∫
dµ(x) |ψ(x)⟩ ⟨ψ(x)| (6)

Can we choose µ such that Sµ is a resolution of the indentity on some subspace? Yes! From M,
you can get the identity on a vector space K.



Quasi-modes and permuation symmetry
▶ K is a space generated by states with fixed numbers of excitation on each sublattice. It’s a

sublattice respecting but otherwise permutation-invariant subspace projected into the
constrained Hilbert space.

▶ It has O(N2) dimension and matrix-elements can be found with some combinatorics.
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Turner et al. PRX 11, 021021 (2021)



Quasi-modes and permuation symmetry

▶ K is a space generated by states with fixed numbers of excitation on each sublattice. It’s a
sublattice respecting but otherwise permutation-invariant subspace projected into the
constrained Hilbert space.

▶ It has O(N2) dimension and matrix-elements can be found with some combinatorics.

▶ We can construct quasi-modes in K.
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Scarring for Rydberg atoms

Gives a picture of the quasi-modes in K as wavefunctions on M.
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The good quasi-modes take the appealing form of standing waves along the classical periodic orbits.

Turner et al. PRX 11, 021021 (2021)



Summary

A strange many-body system which displays a new kind of ergodicity breaking.
An analogy:–

Many-body quantum scar ↔ Single-particle quantum scar
TDVP regular trajectories ↔ Classical periodic orbits
Conditional quantum revival ↔ Oscillatory wavepackets
ETH-violating atypical eigenstates ↔ Scarred wavefunctions (non-uniform measure)
Our new quasi-modes ↔ Boucing-ball quasimodes

▶ New-and-improved quasimodes much easier to work with than FSA.

▶ With connections to a classical limit.

▶ The subspce K represents mean-field or coherent-state physics.

▶ Approach becomes exact in an S → ∞ limit. See recent work by Markus Müller.



Alternating Heisenberg chain

Spin-12 Heisenberg chain except the
coupling alternates in sign,

H =
2N∑
j=1

(−)jSj · Sj+1 (7)

− + − + − + − +

▶ Exponential degeneracy at
zero-energy – in the middle of the
spectrum. This is due to
antisymmetry.

▶ We find several different kinds of
scar states in here.
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Bethe-ansatz scars

▶ Bethe Ansatz states are states of particles with well defined individual
momentum,

|k1, · · · , km⟩ ∝
∑

x1<...<xm

e i
∑

a xaka |x1, x2, · · · , xm⟩ (8)

|ψ⟩ =
∑
π∈Sm

απ(k1,k2) |k1, k2⟩ (9)

▶ We generalise this a small amount taking superpositions of small numbers
of particle momentum sets.

▶ For magnon numbers m = 2, 3 we find all the zero-energy states.

▶ For m = 4, we find many solutions numerically (but not all the states).

▶ We have Bethe ansatz-like states as exact eigenstates in the interior of the
spectrum.

▶ Different to the asymptotic Bethe ansatz.

arXiv:2501.14017 R. Melendrez, B. Mukherjee, M.
Szyniszewski, C. J. Turner, A. Pal, H. J. Changlani

H. J. Changlani

R. Melendrez



Bethe-Ansatz scars: details of solutions

▶ We add a sublattice degree of freedom, this is the same as combining each particle momentum
k with k + π.

▶ For two magnons m = 2 and even N , the solutions have k1 = −k2.

▶ When N is odd you also get fractionalised momenta (k + π/2, k + π/2).

▶ For m = 3, we take (0, 0, 0), (k,−k, 0). Again additional fractionalised solutions for odd N .

▶ For m = 4, we take (0, 0, 0, 0), (k1,−k1, k2,−k2), (k1,−k1, 0, 0), (k2,−k2, 0, 0),
(k1,−k1, k1,−k1) and (k2,−k2, k2,−k2).

We’re using a fairly flexible Ansatz so we must be careful: is finding
solutions significant?

▶ Dimension of Ansatz is O(N2).

▶ Dimension of nullspace is O(N2).

▶ Dimension of enclosing symmetry sector is O(N3).

So a generic intersection would be zero-dimensional, but we find a
growing number with N .



Symmetric tensor scars

Recently there has been interest in volume-law scarred eigenstates.
Provided N is odd, we have root states, pairing antipodal sites as zero-energy
eigenstates,

|Ψ(v)⟩ = v⊗N (10)

where v is either the singlet state or is any triplet state.

SWAPi ,j

 •
j+N

•
j

•
i

• i+N

= • i+N
•
j+N

•
j

•
i

(11)

As all these states are degenerate, we can take linear combinations,

span |Ψ(VS=0,1)⟩ ∼= V Sym
S=0,1 as vector spaces (12)

allowing for state much more interesting than the root states.

arXiv:2501.14024 B. Mukherjee, C. J. Turner, M.
Szyniszewski, A. Pal

B. Mukherjee

M. Szyniszewski



Symmetric tensor scars: Bell basis
From an (orthonormal) basis of S = 1, we can build an (orthonormal) basis of symmetric tensor
states,

|Ψn1,n2,n3⟩ ∝
∑
π∈SN

π(|T1⟩⊗n1 ⊗ |T2⟩⊗n2 ⊗ |T3⟩⊗n3) (13)

One choice is the Bell basis, ∣∣TB
X

〉
=

1√
2
|↑↑⟩ + |↓↓⟩ ∼= 1√

2
σX (14)∣∣TB

Y

〉
=

1√
2
|↑↑⟩ − |↓↓⟩ ∼= 1√

2
σY (15)∣∣TB

Z

〉
=

1√
2
|↑↓⟩ + |↓↑⟩ ∼= 1√

2
σZ (16)

Using the algebraic structure of the problem, we are able to compute the Renyi entropy efficiently
and we can also extract asymptotics expansions in N .

S = − log tr ρ2 = ΨΨ† (17)



Entanglement in the Bell basis

Using kX = nX/N etc.
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When is a state thermal?

▶ Sometimes there are curious claims that the volume-law scar states are exactly-constructible
thermal states.

▶ But what does it mean for something to be a thermal state?

We have a class of reference thermal states which are Gibbs states or maybe generalised Gibbs
states. If a state is effectively indistinguishable from a reference state then it may as well be thermal.
If we look at connected correlation functions on our states,

⟨Si · Sj⟩ =
{
1/4 if i and j separated by N

0 otherwise
(18)

These states can’t be distinguished from the infinite temperature / maximally mixed state by local
expectation values.
So are these thermal states?

▶ A competent experimentalist is not an ant living inside their experiment.

▶ They can simultaneously place a probe on each side of the system and calculate this correlation
function.

▶ This is like LO (local operation) vs LOCC (local operations and classical communication).



Alternating Heisenberg chain: summary

▶ Integrability-like scar states with m = 2, 3, 4 particles, featuring paired particle momenta.

▶ Alternative presentation of m = 2 states with high robustness to perturbation
(arXiv:2407.11956).

▶ Many-body scar states with area-law, log-law or volume-law entanglement.

▶ These are scar states – not thermal states – because they’re LOCC distinguishable.
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