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Forms of ergodicity breaking

What avenues are there for a quantum system to avoid equilibrium?
» Non-interacting,
» integrable,
» many-body localised systems

These generically fail to equilibrate. Ergodicity is completely broken.

Q: What would be weak ergodicity breaking?
» Sensitivity to initial conditions
» Some atypical eigenstates

We have two answers to this question now,
» Fragmentation

» Quantum scars



Hilbert-space Fragmentation

It can happen that the connectivity of states induces by H forms multiple connected components.
Representation theory framework (see Moudgalya et al. PRX 2022), for a Hamiltonian, H = Zi h;,
define a pair of C*-algebras,

A = (h;) C:A’:{O: [0, A] =0} (1)
The state space decomposes into a direct sum, c.f. Schur-Weyl duality,

H=P (V\'a V) 2)

The splitting of H is what makes this non-trivial.
We can also find this in other settings:

» Quantum circuits
» Open quantum systems



Fragmentation in open quantum systems

dp :
dr L(p) = —i[H,p]+ Z“f (2FprjT - {FJTFJ"[)})
J

Hamiltonian terms H = Z: 1X:Z:.1 and jump operators Fj = Z_1Zj11 .
J=1N 4+

J
These sums don't include any terms which would go over the open boundaries.

» Hamiltonian is an SPT phase.
» Zero modes are (approximate) strong symmetries before dissipation.
» Some of them then become weak symmetries after dissipation.

» Information is recoverable if you can make the jumps observable
This and more is all in arXiv:2310.09406 and not what this talk is about.




OSF: Superoperator algebras

Natural generalisation of bond A and commutant C algebras,

A = (uj = —iady, d; = Adg)
C = {O : [07 U/] - 07 [Oad/] = O}

From the double commutant theorem we get a representation theoretic structure like the Schur-Weyl
duality,
H=P Ve VY
A

Operator dynamics of a Pauli M,

0 if |[H, M| =0 M it [F, M
UJM:—I&dHM: | [ J? ] dJM: + I [_/7 ]
/ —M  otherwise

—2iH;M  otherwise

So (UJ')2 cC



OSF: Frustration graphs

The Lindblad terms either commute or anti-commute so we can summarise A represented onto a
(u;)? fragment with a frustration graph,

Uji—1 Uj+1 Uj3 Ujis

A A AP

and choose another presentation for this algebra with the same properties (see Chapman et al.

Quantum 2020). It's the TFIM!
> If (uj)2 = 0 in a representation then that Ising term is missing, dividing the system into

subsystem fragments.
» Fields can be missing at the boundary due to open boundary conditions.

» There's another copy of the ising chain for the other parity of terms.



OSF: Effective Model

» The effective model is a non-Hermitian transverse-field Ising model
_ X X . Z
H = ZJO'J- Oiyq + IHLZO'J-
J J

» Sometimes the boundary fields are missing again. This embeds the global zero modes from
before.

» Complex level spacing ratio after resolving symmetries [Sa et al. PRX 2019]
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OSF: Integrability and phase transition
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OSF: Dynamical consequences
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» Quench from (rapid cooling) ground state |¢)
of k-dominated phase to J-dominated phase.

v

@) is roughly an extremal Y eigenvector.
Looking at observables {¢(t)| OJ-Z [o(t)).

Dynamic phase transition, oscillations in the
k order parameter.

vy

» Eventually dissipation will win and system
equillibrates.
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OSF: Summa ry arXiv:25XX.XXXX soon (hopefully)
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(a) symmetries (b) fragmentation (c) fragmentation (d) Ising model
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» Fragmentation can naturally be generalised to Lindblad master equation as operator-space

fragmentation.
» We can observe a non-Hermitian dynamical phase transition in the operator dynamics



Rydberg atom system

Bernien et al. Nature 551(7682), 579 (2017)

» Cold neutral atoms resonantly driven with a laser to produce Rabi oscillations.
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» If the interaction energy is very large the we get the Rydberg blockade where adjacent excited

atoms ee are forbidden.

» Long-lived oscillations were observed, but only from very specific states.




Effective PXP mOdel Turner et al. Nat. Phys. 14, 745 (2018) Turner et al.

PRB 98, 155134 (2018)
1.0
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~ 0.8 7 d=4
In the blockade regime, the effective Hamiltonian §06 | ﬂ
IS, N
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N =
HeS PaXPa  omocoso  (3) 027 j\
j=1 ool LUV " e
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» Oscillations in local observables is caused by ;
a periodic quantum revival. 107 .
» The level statistics is Wigner-Dyson, which .
rules out strong ergodicity breaking. | '
» There's an exponential degeneracy at zero -
energy.
What's going on?




Scarred eigenstates in PXP

>

A small number of special eigenstates with =
anomalous overlap with the Néel state.

They have approxiamtely equally spaced o 1071
eigenvalues, converging with V. B 10771,
This explains the oscillatory dynamics. §10—10 -
Most of these eigenstates are not eigenstates 10-13

of local frustration-free Hamiltonians. ot

With a couple of exceptions, [Lin +
Motrunich]

Recall the Shiraishi-Mori construction for embedding frustration-free ground states Z as scar states,

H=> hP+H [H',P] =0 [P;,P] =0

7 = ﬂkerP,-

Most examples of many-body quantum scars in the literature can be put into this form.

But these are not one of them.

(4)



Quantised billiars Heller PRL 53(16), 1515 (1984)

» Unstable periodic orbits of the chaotic classical billiard imprint upon a wavefunction after
quantisation.

» This is surprising! One might expect that if a particle’s position gets blurred out upon
quantisation that it would diverge rapidly from unstable trajectories.




Quasi-modes and scarred eigenstates

» Approximate eigenstates of the form ¢ = ysin(ny) for
suitable y [O'Conner and Heller 1988]. These are like
"bouncing balls” trajectories? But how can these be
connected to the exact eigenstates?

» If the quasi-mode has an energy variance K? and
there's at most M eigenstates in a 4K interval around
the quasi-mode, then there exists eigenstates with
anomalously large overlap [Zelditch 2004]. This is the
corresponding scarred eigenstate.

» Constructing the quasi-modes was simple enough, but
showing that the density of states is non-pathological
was much more challenging [Hassell 2010].

» The flavour of these quantum scars is quite different to those following Shiraishi-Mori. Can we
follow this recipe in a many-body system?

» We could call this distinction algebraic vs analytic quantum scars.



Coherent states and variational dynamics

» The most classical states for many systems are the coherent states. There's no suitable frame
of traditional coherent states here because of the constraint.
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» We can take the next best thing: the quantum dynamics is restricted into a class of states M
using the variational principle (TDVP). See [Ho et al. PRL 2019] and [Michailidis et al. PRX
2020].

» We can view this as a mere variational approximation, but we can also view it as a classical
system in its own right.




Path integral quantisation and correspondence principle

Recall the Feynman path integral construction for a particle in quantum mechanics. We take a
propagator, subdivide it and insert resolutions of the identity.

1= /dx x) (x| (5)

Keep refining this process and you have a path integral.
For some provided measure (1, we can construct a frame operator,

5, = / A [9(x)) () (6)

Can we choose (1 such that S, is a resolution of the indentity on some subspace? Yes! From M,
you can get the identity on a vector space K.



Quasi-modes and permuation symmetry Turner et al. PRX 11, 021021 (2021)

» /C is a space generated by states with fixed numbers of excitation on each sublattice. It's a
sublattice respecting but otherwise permutation-invariant subspace projected into the
constrained Hilbert space.

» It has O(N?) dimension and matrix-elements can be found with some combinatorics.
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Quasi-modes and permuation symmetry Turner et al. PRX 11, 021021 (2021)

» /C is a space generated by states with fixed numbers of excitation on each sublattice. It's a
sublattice respecting but otherwise permutation-invariant subspace projected into the
constrained Hilbert space.

» It has O(N?) dimension and matrix-elements can be found with some combinatorics.

» We can construct quasi-modes in /C.




Scarring for Rydberg atoms Turner et al. PRX 11, 021021 (2021)

Path-integral quantisation

. RN -
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Dequantisation

Gives a picture of the quasi-modes in /C as wavefunctions on M.

The good quasi-modes take the appealing form of standing waves along the classical periodic orbits.



Summary

A strange many-body system which displays a new kind of ergodicity breaking.
An analogy:—

Many-body quantum scar <> Single-particle quantum scar

TDVP regular trajectories <> Classical periodic orbits

Conditional quantum revival < Oscillatory wavepackets

ETH-violating atypical eigenstates <> Scarred wavefunctions (non-uniform measure)
Our new quasi-modes <> Boucing-ball quasimodes

» New-and-improved quasimodes much easier to work with than FSA.

» With connections to a classical limit.

» The subspce IC represents mean-field or coherent-state physics.

» Approach becomes exact in an S — oo limit. See recent work by Markus Miiller.



C. J. Turner, M. Szyniszewski, B. Mukherjee, R.
Melendrez, H. J. Changlani, A. Pal —
arXiv:2407.11956

Alternating Heisenberg chain

Spin-% Heisenberg chain except the
coupling alternates in sign,

2N

H=) (VS-S (7)

(b)2 = ]
—GOE |} ..
[ — Poisson| ] ot
» Exponential degeneracy at ~ SR e 1D irreps
. . - 1 - ] \\\ *Xg— 1 .
zero-energy — in the middle of the x A | T | e 2Djirreps
spectrum. This is due to ¥/ "4 | *--+Coupled 1D irreps
- oo Coupled 2D irreps
antisymmetry. of !
r

» We find several different kinds of
scar states in here.



Bethe_a nsatz scars arXiv:2501.14017 R. Melendrez, B. Mukherjee, M.
Szyniszewski, C. J. Turner, A. Pal, H. J. Changlani

» Bethe Ansatz states are states of particles with well defined individual

momentum,
|k17 7km> ¢ Z eiZaXaka |X1,X2,"' 7Xm> (8)
X1<...<Xm
[¢) = Z Clr(ky ko) K15 K2) (9)
T€ESH

» We generalise this a small amount taking superpositions of small numbers
of particle momentum sets.

» For magnon numbers m = 2, 3 we find all the zero-energy states.

v

For m = 4, we find many solutions numerically (but not all the states).

v

We have Bethe ansatz-like states as exact eigenstates in the interior of the
spectrum.

» Different to the asymptotic Bethe ansatz.

R. Melendrez



Bethe-Ansatz scars: details of solutions

» We add a sublattice degree of freedom, this is the same as combining each particle momentum
k with k + .

» For two magnons m = 2 and even N, the solutions have ky = —ko.
» When N is odd you also get fractionalised momenta (k + 7/2, k + 7/2).
» For m = 3, we take (0,0,0), (k, —k,0). Again additional fractionalised solutions for odd N.
» For m = 4, we take (0, 0,0, 0), (kl, — ki, ko, —kz), (kl, —kq, 0, 0), (kg, — k>, 0, O),
(ky, —ki, k1, —ki) and (ko, —ko, ko, —ko).
We're using a fairly flexible Ansatz so we must be careful: is finding
solutions significant?
» Dimension of Ansatz is O(N?).
» Dimension of nullspace is O(N?).
» Dimension of enclosing symmetry sector is O(N?).

So a generic intersection would be zero-dimensional, but we find a
growing number with N.



Sym metric tensor scars arXiv:2501.14024 B. Mukherjee, C. J. Turner, M.
Szyniszewski, A. Pal

Recently there has been interest in volume-law scarred eigenstates.
Provided N is odd, we have root states, pairing antipodal sites as zero-energy
eigenstates,

W(v)) = v&N (10)

where v is either the singlet state or is any triplet state. .
& y tip B. Mukherjee

' +N ' +N
SWAP; J%’* _ J@’* (11)
j JEN i J+N

As all these states are degenerate, we can take linear combinations, M. Szyniszewski

span |[W(Vs—g1)) = Vssfal as vector spaces (12)

allowing for state much more interesting than the root states.



Symmetric tensor scars: Bell basis

From an (orthonormal) basis of S = 1, we can build an (orthonormal) basis of symmetric tensor

states,

|wn1,n2,n3> X Z 7T(| T1>®n1 & ’T2>®n2 ® ‘T3>®n3)

TeSy
One choice is the Bell basis,
By 1 ~ 1
TX) = T+ D) = —ox
By _ Lo iy~ b
Ty) = ﬂlTﬁ ) = \@UY
1 1

77) =

V2 V2

1)+ 1) 2 =0z

(13)

(14)
(15)

(16)

Using the algebraic structure of the problem, we are able to compute the Renyi entropy efficiently

and we can also extract asymptotics expansions in .

S =—logtrp? = WYl

(17)



Entanglement in the Bell basis

Using kx = nx/N etc.
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When is a state thermal?

» Sometimes there are curious claims that the volume-law scar states are exactly-constructible
thermal states.

» But what does it mean for something to be a thermal state?

We have a class of reference thermal states which are Gibbs states or maybe generalised Gibbs
states. If a state is effectively indistinguishable from a reference state then it may as well be thermal.
If we look at connected correlation functions on our states,

1/4 if i and j separated by N

0 otherwise

(Si-5) = (18)

These states can't be distinguished from the infinite temperature / maximally mixed state by local
expectation values.
So are these thermal states?

» A competent experimentalist is not an ant living inside their experiment.

» They can simultaneously place a probe on each side of the system and calculate this correlation
function.

» This is like LO (local operation) vs LOCC (local operations and classical communication).



Alternating Heisenberg chain: summary

» Integrability-like scar states with m = 2, 3, 4 particles, featuring paired particle momenta.

» Alternative presentation of m = 2 states with high robustness to perturbation
(arXiv:2407.11956).

» Many-body scar states with area-law, log-law or volume-law entanglement.
» These are scar states — not thermal states — because they're LOCC distinguishable.
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